

D2 BMW Case Study Report

Group Names

- William
- Adam
- Valeria
- Imogen
- Seehem
- Disha

Functional Requirements	2
Non-Functional Requirements	2
Risk Assessment	4
Jse Case Diagram	6
Class Diagram	8
Sequence Diagram	9
Appendices	10

Introduction

The BMW team would like a vehicle tracking program designed for them to work with their existing CCTV. This report will establish some of the preplanning done before further enhancement and talk with the BMW team.

BMW Requirements & Brief

BWM would like to monitor their logistic vehicles within one of their locations: Hams Hall Plant. They are unable to track their vehicles via GPS and do not want to outfit and pay for a Bluetooth solution. What they want to do is use their preexisting CCTV cameras to identify and locate their logistic vehicles. Additionally, they would like the Api to calculate whether vehicle routes are optimal or not.

Some more specific details involve the model utilizing X Y Z coordinates of each vehicle type in real time, distinguishing each vehicle and making all data pollable by the API as to overlay the tracking data into their Vehicle Management System.

Functional Requirements

FR ID	Functional Requirement Description		
FR1	The system must track the location of each vehicle within the Plant Hams Hall Area, using		
	only their preexisting hardware (CCTV).		
FR1.1	The system must utilise CCTV footage to track the co-ordinate location or each vehicle.		
FR1.2	The system must store the co-ordinate location of each vehicle in an XYZ format.		
FR2	The system must be able to distinguish between vehicles using AI technology and QR		
	codes that are to be placed on the roofs of each vehicle*.		
FR3	The system must store data for the API to use.		
FR3.1	The system must store this data in a JSON format.		
FR3.2	The system must store data of each vehicle.		
FR4	The system must be able to calculate the optimal route for a vehicle.		
FR4.1	The system must calculate this optimal route using Dijkstra's algorithm.		
FR5	The system must alert users of incidents within the warehouse.		
FR5.1	The system must also alert users of incidents that are likely to happen.		
FR5.2	The system must alert users when a vehicle has been damaged, needs repairing, or needs		
	to be swapped out.		
FR5.3	The system must also allow users to manually create alerts.		
FR6	The system must allow manual data input of vehicle data.		
FR6.1	The system must allow only System Administrators to input initial vehicle data.		
FR6.2	The system must allow users to update the status of each vehicle (e.g. the vehicle needs		
	refuelling).		
FR7	The system must keep data secure to avoid outside parties / threats.		
FR7.1	The system must only be accessible by those in the Logistics Operations team (and those		
	of higher positions who need access to this data).		
FR7.2	The system must have a login feature to ensure it and its data can only be accessed by		
	those in the Logistics Operations team.		

*We will be using QR codes alongside AI object recognition to distinguish between different vehicles of the same model or type.

Non-Functional Requirements

NFR ID	Non-Functional Requirement Description
NFR1	The system must process 5 CCTV frames every second.
NFR2	The system must achieve an object detection accuracy of at least 95%.
NFR3	The system must support multiple users querying real-time vehicle location data by ensuring a response time below 300ms to guarantee smooth system performance without any delays.

Ethical & Legal Issues

Issue ID	Issue Description	Issue Justification	Related Requirement ID
E1	Vehicle	The performance of the system may not be optimised to	FR1, FR2,
	Tracking	its full potential due to delays in the operations, such as,	FR3, FR4,
	Inaccuracies	taking longer to deliver. The API may misidentify or	FR5, NFR2
		completely fail to track some vehicles, leading to data	
		inaccuracies. This in turn leads to logistical problems	
		and inaccurate vehicle route preferences.	
E2	Privacy &	Although the CCTV is used exclusively by the program to	FR1, FR2,
	Consent	track logistic vehicles live, it may capture sensitive	NFR2
	Misuse of	employee information. This could cause discomfort in	
	Data	the work environment, raising privacy concerns and even	
		potential legal issues if not acknowledged. Moreover,	
		using unauthorised footage of the users would lead to a	
		violation of their privacy, potentially leading to serious	
		consequences such as employees suing the company.	
L1	Intellectual	It must be ensured that third parties have correct	FR3
	Property	licensing and abide by the same data protection rules.	
	Agreement	Failing to meet this requirement could result in legal	
		issues and reputation loss.	
L2	Incorrect	This could cause incorrectly calculated optimised	FR1, FR2,
	Information	routes, accidents, increased consumption of fuel, and	FR3, FR4,
	provided by	delays, leading to legal liability for the company.	FR5, NFR1
	the System	Inaccurate information could also lead to collision due	
		to the system generating incorrect paths to the optimal	
		routes.	
		This could lead to incidents such as drivers	
		unintentionally taking congested or paths, possibly	
		causing incidents to occur. As a result, the company	
		may be held liable and failure to provide accurate data	
		could discourage other companies from working with	
		them.	
L3	Employment	All employees have the right to a safe and healthy work	FR1, FR2,
	protection	environment, including handling any incidents that	FR5, NFR2
	law	occur at work. Furthermore, employees have the right to	
		their privacy, hence, it is essential for the company to	
		review employment contracts to ensure that monitoring	
		practices ¹ and permission to store sensitive information ²	
		are aligned with agreed terms and privacy regulations. If	

¹<u>https://www.gov.uk/monitoring-work-workers-rights</u>

² <u>https://www.gov.uk/personal-data-my-employer-can-keep-about-me</u>

CMP5354: D2 BMW Case Study Report

employees do not consent to being monitored, they have the right to act against the company for violating their	
privacy, consequently damaging the company's reputation.	

Risk Assessment

Risk ID	Risk Description	Risk Category Scale (1 – 10, lowest - highest risk)	Risk Mitigation Strategy	Related Requirement ID
RI1	Confidential data may be intercepted by people with malicious intent and without correct authorisation. Attackers may intercept and tamper with the data and gain access to confidential information.	9	Make sure all transmissions are encrypted. Implement strict access controls, for example, have a login system that only users of the Logistics Operations	FR7, NFR, FR3
RI2	A high volume of requests might overload the system causing it to slow down or crash which may disconnect the Digital Twin from the API, losing the ability to retrieve real-time data such as vehicle locations.	5	Ensure that models are in continuous training to increase the accuracy, and that the building is well- lit. The system must also be regularly updated to prevent this from happening.	FR1, FR2, FR3, FR4, FR5, NFR1, NFR3
RI3	The CCTV camera feed may fail to monitor vehicles due to network failure or hardware malfunctions, leading to disruptions in logistics operations.	8	Implement backup camera feeds and redundancy measures.	FR1, FR2, FR3, FR4, FR5, NFR1
RI4	Vehicle misidentification may be caused by poor QR code visibility. Dirt, lighting, damage to the QR code,	7	Implement secondary identification, for instance, license plate recognition.	FR1, FR2, FR3, FR4, FR5, NFR1

	and objects within the			
	warehouse may hide the			
	QR code from CCTV,			
	causing vehicle tracking			
	failures or			
	misidentification.			
RI5	The route optimisation	6	Implement vehicle	FR4, FR5
	system may make bias		dimensions to vehicle types or	
	or incorrect routes in		integrate real-time obstacle	
	failure to account for		detection.	
	sudden congestion and			
	temporary blockages.			
	Some vehicles may also			
	take up bigger paths in			
	the warehouse. This			
	may lead to delays or			
	potential incidents.			

Use Case Diagram

Use Case Specification

Name	Check vehicle location					
Purpose	To allow authorised users, specifically users of the Logistics Operations Team, to					
	check the real-time location of a vehicle using the Digital Twin system.					
Prerequisites	"Query Vehicle" and "Log into Digital Twin" use cases completed.					
Narrative	1. The user logs into the Digital Twin system.					
	2. The user queries for a vehicle in the search bar.					
	3. The Digital Twin requests the vehicle location from the API.					
	4. The API gets the request from the Digital Twin and retrieves the specified					
	vehicle's location.					
	5. The Digital Twin receives the vehicle location.					
Outcome	User successfully views the location of the selected vehicle on the user interface.					
	As time passes and the specified vehicle stays the same, the location of the vehicle					
	and its other details are updated in real-time.					
Alternative	1. The user logs into the Digital Twin system.					
Narrative	2. The user queries for a vehicle in the search bar.					
	3. The Digital Twin requests the vehicle location from the API.					
	4. The API gets the request from the Digital Twin.					
	5. The API tries to retrieve the vehicle location data.					
	6. The data cannot be found.					
Alternative	The user interface displays an 'Data cannot be retrieved' error. If the vehicle is					
Narrative	offline, the system notifies the user and gives the last known location of the					
Outcome	vehicle.					

<u>Class Diagram</u>

Sequence Diagram

<u>Appendices</u>

- Dijkstra's algorithm An algorithm that calculates the shortest path between two nodes.
 (W3schools, n.d.).
- 2FA (Two-Factor Authentication) Security method that requires identification to check if it matches the data (Bing, 2021).
- User logs keeps a track of the activities occurring within the system, including any errors and the overall behaviour of the user - ("Understanding System/User Logs: A Comprehensive Guide to Activity Tracking"). (SentinelOne, 2024).
- user queries Data about an individual user saved in the database. (BRANDERMIND AI, 2025)
- user interface a medium through which the user interacts with the machine, and this includes input devices such as screens. (Churchville, 2021).
- logistic vehicles More specifically warehouse internal logistic vehicles such as forklifts,
 electric pump trucks and shunting tractor units. (Manutan, 2024).
- JSON (JavaScript Object Notation) A file format for storing and transporting data (W3Schools, 2019).