

Computer Mathematics and Declarative
Programming: Mastermind Command
Line Game
Angelo Luis Lagdameo | Imogen Dicen

 S2 2024/25
CMP5361: Computer

Mathematics and Declarative
Programming

Contents
T1 – Planning and Designing .. 3

Project Choice & Project Description .. 3

User / Stakeholder Identification & Analysis .. 4

Initial Analysis of requirements ... 5

User Story Specifications .. 7

Data Model .. 11

Types ... 11

Axiomatic Definitions and Functions ... 15

The Mastermind Function Dependency Graph ... 27

T2 – Program Implementation ... 28

Imports.. 28

Types ... 28

Menu ... 28

Confirm ... 28

Code .. 29

Hint.. 29

Player, and Players ... 29

Secret .. 30

Guess .. 30

Feedback ... 30

Row ... 30

NormalBoard, HardBoard, and Board .. 30

Program Functions .. 31

main .. 31

receiveMainMenuInput .. 31

parseMainMenuOption .. 32

receiveConfirmationInput .. 33

parseConfirmationOption.. 33

receiveCodePegInput .. 34

parseCodePegOption .. 34

__str__ ... 35

normalSecretCode .. 35

makeSecretCode ... 35

hardSecretCode .. 36

startGameplay ... 36

playGame .. 38

playRound ... 39

endGame... 40

getFeedback .. 41

getRedHints ... 41

getWhiteHints .. 42

joinHints .. 42

sortHints.. 43

checkIfDupe .. 43

checkGuessedCorrectly .. 43

checkAlmostGuessed ... 43

occursTwice .. 44

displayBoard.. 44

formatRow ... 45

formatPeg .. 45

printInColour ... 46

updateBoard .. 46

T3 – Testing and Verification .. 0

Manual Testing .. 0

Automated Testing... 0

Pytest .. 0

T4 – Understanding and Exploring Team-Based Software Development .. 7

OpenRA ... 7

Documentation for Project Contributors ... 7

Version Control ... 8

Version Control vs. Cloud-based Storage Systems .. 8

OpenRA’s and Our Commit History ... 9

OpenRA’s Issue Tracker ... 9

OpenRA’s Pull Request Tracker .. 10

Pair Project Development Reflection ... 10

The Use of Version Control in Pair Project Development Reflection ... 11

References .. 11

T1 – Planning and Designing

Project Choice & Project Description
Project Members:

• Angelo Luis Lagdameo
• Imogen Dicen

Project Choice: Mastermind Command Line Game

Project Description - Mastermind

This is a “Design from scratch” task and is intended for those students who would like the freedom (and
challenge) of speccing out their system from the ground up.

Based on the Mastermind game, your company wants you to create a small-scale prototype for the Mastermind
game where it will take the form of an interactive command line program.

The program should aim to implement the following capabilities:

• Allow a player to start a new 2-player game between a human codemaker and a human codebreaker
• Allow a player to start a new single-player game against the CPU where the CPU is the code maker and

the code to break is algorithmically generated
• Allow a player to start a new single-player ‘campaign’ against the CPU where the CPU acts as the code

maker but the codes are already predefined (acting a separate “levels” of the game)

Using your developing understanding of how to plan out a program, you should plan out the program using
appropriate techniques, considering the following key areas:

• Specify, explain, and justify appropriate methods of user interaction for the program using suitable
techniques such as the use of Gherkin specifications based in Hoare logic

• Specify, explain, and justify an appropriate data model for the various kinds of data the program will
deal with, supported by appropriate data type and data structure definitions based in Set theory.
This should be accompanied by appropriate Type definitions within the programming language
based on these Set theory definitions.

• Specify, explain, and justify an appropriate set of behaviours for the program, supported by
appropriate definitions based in Mathematical Relations, Mathematical Functions, and Graph
Theory.

User / Stakeholder Identification & Analysis
Age Range

As stated in the project description, we are designing the small-scale prototype of the Mastermind game for a
company. A company is filled with a range of personnel at different stages of their life. On average, company
staff will be around the age of 23+, whilst considering that they are individuals that can play a boardgame.

Considering the company, people from all age ranges can play the game, as long as they are capable of
understanding and playing the game.

Technical Capability

As the game is intended for command-line usage, the user must be able to read and type into the command
line. Interface complexity should be straightforward and comprehensible to eliminate the difficulty in the case
that the user is not widely computer command prompt oriented. To increase readability and ease of playing the
game, colours may be used for output in the command line.

Assuming the company is game-development oriented, we would expect that the main field of staff would be
capable of having the basic understanding of the Command Prompt nature and the capability of operating a
computer as a piece of hardware.

Motivation

Board games in general are played for entertainment purposes, as well as for stimulating the brain. Mastermind
is a board game in itself, allowing one or two people to enjoy its challenges.

As the target user specified in the project description is the company. Considering that the company has drawn
out the following capabilities expected out of the development of the game program, they will mainly be testing
and validating the iterations of the Mastermind implementation so that it behaves soundly to their ideal vision
of how the finished product should look and behave like.

Additionally, considering external users involved in the category of everyone, we could infer that some may be
using it in the case of analysing for literature review such that they are interested in understanding the
mathematic aspect behind the gameplay.

Initial Analysis of requirements

Explicit
Req. ID

Name Description

1 Small-Scale
Prototype

Development of a working Mastermind Command Line Game at
minimum should carry out the main stated capabilities in order to
leave room for necessary testing and the program refinement.

2 Mastermind
Game

Program should aim to behave in accordance to how the original
boardgame works.

3 Interactive
Command-Line
Program

Gameplay of the game program will be brought out on the Python
IDLE Shell to mimic the Command Line style of an interface.

4 Single Player
Mode

Single Player mode should be available to start a game between the
Human Code Breaker and the CPU Code Maker where the code to be
guessed is algorithmically generated before starting a game.

5 Multiplayer
Mode

Multiplayer mode should be available to start a game between a
Human Code Breaker and Human Code Maker in which the Code to
be guessed is generated by the Human Code Maker before the game
starts.

6 Campaign Mode Single Player Campaign mode should be available to start a game
between the Human Code Breaker and the CPU Code Maker.

• Levels contain pre-defined codes and a different amount of
guess attempts in accordance with their difficulty

o 1st Level (Easy) has a Normal Four Colour Pattern
o 2nd Level (Medium) has a Four Colour Pattern

containing colour duplicates
o 3rd Level (Hard) has a Four Colour Pattern.

Implicit

Implicit
Req. ID

Name Description

1 Small board As we are developing a small-scale prototype of the game, it is
implied that the game board will also be small.

2 Main menu To allow the user to select a game option, there must be a main game
menu to choose these options from.

3 Redirection to
the main menu

It would be sensible to redirect users to the main menu after a game
has ended, rather than closing the program on game completion.

4 User input As the game is to be played from the command-line, it is expected
that the user is to input text to navigate the main menu and play
Mastermind.

5 Resignation There should be an option for the user to end a current game if they
intend to go back to the main menu to select another game option.

6 Command line
friendly board
layout

As the game is to be played from the command-line, the board will be
made up from characters instead of being drawn.

7 Display of
previous
attempts

After every guess attempt, when the board is updated for the next
turn, the board will display previous rows of guesses with feedback.

Level of Interactivity

As a command-line board game, the program will not be a chatty program, only prompting the user for their
options and stating the user’s choices for confirmation, as well as stating the winner of the game, and any error
messages for incorrect input.

This Mastermind prototype will work based on very little input from the user, in which options will be given a
respective number value designated for a specific selection.

For the marking of Codebreaker guesses, feedback will automatically be generated and will be displayed on an
updated version of the game board.

 Method of Interactivity

The user will be able to interact with this Mastermind prototype via the command line, as stated in the project
description.

We will be using numbers as a form of user input that correspond to choices from a menu displayed (e.g. main
menu, code peg choice menu).

The program’s / CPU’s output will be presented to the user in the command line interface, and the game board
will be updated and displayed after every turn.

User Story Specifications
This section provides Gherkin specifications for our system and its behaviours.

Interactable Components of the System

- Allow a player to choose the game mode and start a new game (multiplayer, single player against CPU,
single player campaign against the CPU).

- Allow a player to choose a coloured peg to be placed.
- Allow a player to confirm their guess containing the coloured pegs placed.

Happy Paths

This section entails the scenarios of the Mastermind Command Line Game that occur when the intended paths
of the program are taken due to valid user input.

Feature: Choosing a game option

Narrative:
As a command line user
I want to be able to select the game option in the main menu
So, I can play a Mastermind game
Scenario 1: Player selects 1st game option
Given I have specified an argument of 1 to the command line
When I press Enter
Then ‘SINGLEPLAYER GAME MODE.’ should be output
And the game board is displayed
And the command line prompts the CodeBreaker for their guess
Scenario 2: Player selects 2nd game option
Given I have specified an argument of 2 to the command line
When I press Enter
Then the command line prompts the CodeMaker to form the secret code
Scenario 3: Player selects 3rd game option
Given I have specified an argument of 3 to the command line
When I press Enter
Then ‘CAMPAIGN GAME MODE STAGE 1.’ should be output
And the game board is displayed
And the command line prompts the CodeBreaker for their guess
Scenario 4: Player selects 4th game option
Given I have specified an argument of 4 to the command line
When I press Enter
Then a ‘Exiting Mastermind...’ message should be output
And program is exited

Feature: Choosing a peg colour to put in the peg slot

Narrative:
As a command line user
I want to be able to select the peg colour
So, I can place it in a peg slot to guess the secret code
Scenario: Player selects peg colour
Given the program has output a list of colours I can choose from
And I have specified an argument of *colour*
When I press Enter
Then ‘You have chosen a *colour* peg.’ should be output

Feature: Choosing a Confirmation Option for setting the Secret Code

Narrative:
As the Codemaker
I want to be able to select a confirmation option
So, I can confirm my choice of secret code for the CodeBreaker to guess
Scenario: Codemaker proceeds to confirm their secret code
Given the user has selected their peg colours for each slot of their secret code
And the program prompts whether I want to confirm my secret code
When I enter an argument of “y” to the command line prompt
Then ‘Choice Confirmed.’ should be output
And the program should proceed on to letting the Codebreaker make their 1st guess
Scenario: Codemaker proceeds to cancel their secret code
Given the user has selected their peg colours for each slot of their secret code
And the program prompts whether I want to confirm my secret
When I enter an argument of “n” to the command line prompt
Then ‘Choice Cancelled’ should be output
And the program re-prompts the Codemaker to set their secret code

Feature: Choosing a Confirmation Option for a Guess

Narrative:
As a command line user
I want to be able to select a confirmation option
So, I can confirm my choice of pegs for my guess
Scenario: Player proceeds to confirm their guess
Given the user has selected their peg colours for each slot of their guess
And the program prompts whether I want to confirm my guess
When I enter an argument of “y” to the command line prompt
Then ‘Choice Confirmed.’ should be output
And the program should display the update board
Scenario: Player proceeds to cancel their guess
Given the user has selected their peg colours for each slot of their guess
And the program prompts whether I want to confirm my guess
When I enter an argument of “n” to the command line prompt
Then ‘Choice Cancelled.’ should be output
And the current game board is displayed
And the command line re-prompts for the 1st peg colour option of their guess

Sad Paths

This section entails the scenarios of the Mastermind Command Line Game that occur when the unintended
paths of the program are taken due to invalid user input.

Feature: Choosing a game option

Narrative:
As a command line user
I want to be able to select the game option in the main menu
So, I can play a Mastermind game
Scenario 1: Player selects an Invalid Game Option
Given I have specified an argument of *invalid input* to the command line prompt
When press Enter
Then ‘That is an invalid main menu choice.’ should be output to specify an invalid input
And the main menu reloads the main menu interface
And the command line re-prompts for a Valid Game Option

Feature: Choosing a peg colour to put in the peg slot

Narrative:
As a command line user
I want to be able to select the peg colour
So, I can place it in a peg slot to guess the secret code
Scenario: Player selects invalid peg colour option
Given the program has output a list of colours I can choose from
And the program has selected the peg slot for me to fill
And I have specified an argument of *invalid input*
When I confirm my choice of peg colour
Then ‘That is an invalid code peg choice.’ should be output
And the command line re-prompts for a Valid Colour peg Option

Feature: Choosing a Confirmation Option for setting the Secret Code

Narrative:
As the Codemaker
I want to be able to select a confirmation option
So, I can confirm my choice of secret code to guess
Scenario: Codemaker enters an invalid confirmation option
Given the user has selected their peg colours for each slot of their secret code
And the program prompts whether I want to confirm my secret code
When I enter an argument of *invalid input* to the command line prompt
Then ‘That is an invalid confirmation choice.’ should be output
And the command line re-prompts for a Valid Confirmation peg Option

Feature: Choosing a Confirmation Option for a Guess

Narrative:
As a command line user
I want to be able to select a confirmation option
So, I can confirm my choice of pegs for my guess
Scenario: Player enters an invalid confirmation option
Given the user has selected their peg colours for each slot of their guess
And the program prompts whether I want to confirm my guess
When I enter an argument of *invalid input* to the command line prompt

Then ‘That is an invalid confirmation choice.’ should be output
And the command line re-prompts for a Valid Confirmation Option

Data Model

Types

Menu

Explanation:

Menu will represent the option chosen by the human Player from a menu displayed. Created as a Class, it
will utilise Enum to set the corresponding Option Values (e.g. Singleplayer initiated by 1).

We will be using Enums to represent this type, to ease handling user input (they will just input the menu
number instead of a word matching the option).

Type definition:
𝑙𝑒𝑡 𝑀𝑒𝑛𝑢 = { (𝑆𝑖𝑛𝑔𝑙𝑒𝑝𝑙𝑎𝑦𝑒𝑟, 1), (𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑎𝑦𝑒𝑟, 2), (𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛, 3), (𝐸𝑥𝑖𝑡, 4) }

Type definition in Python:

class Main_Menu_Option(Enum):

 Single_Player = 1

 Multiplayer = 2

 Campaign = 3

 Exit = 4

Menu: TypeAlias = Main_Menu_Option

ConfirmationOption

Explanation:

ConfirmationOption will represent the option chosen by the human Player to confirm their selection.
Type definition:

𝑙𝑒𝑡 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 = { (𝑌𝑒𝑠, 𝑦), (𝑁𝑜, 𝑛) }

Type definition in Python:

class Confirmation_Option(Enum):

 Yes = 'y'

 No = 'n'

Confirm: TypeAlias = Confirmation_Option

Code

Explanation:

Code pegs will represent the individual pegs used by the CodeMaker or CPU to make the secret code and by
the CodeBreaker to break the secret code.

We will be using Enums to represent this type, to ease handling user input.

The choices of colour are orange, green, blue, yellow, purple and brown; the empty peg is used to define
currently empty peg slots in the guess section of a game board row.

Type definition:

𝑙𝑒𝑡 𝐶𝑜𝑑𝑒 = { (Empty, 0), (𝑂𝑟𝑎𝑛𝑔𝑒, 1), (𝐺𝑟𝑒𝑒𝑛, 2), (𝐵𝑙𝑢𝑒, 3), (𝑌𝑒𝑙𝑙𝑜𝑤, 4), (𝑃𝑢𝑟𝑝𝑙𝑒, 5), (𝐵𝑟𝑜𝑤𝑛, 6) }

Type definition in Python:

class Code_Peg_Option(Enum):

 Empty = 0

 Orange = 1

 Green = 2

 Blue = 3

 Yellow = 4

 Purple = 5

 Brown = 6

Code: TypeAlias = Code_Peg_Option

Hint

Explanation:

Hint pegs will represent the individual pegs used by the CPU / program to give feedback on whether the
guess made by the CodeBreaker matches the secret code, or not.

The white hint peg infers that a certain coloured code peg has been chosen correctly but has been placed
incorrectly on the game board; a red hint peg infers that a certain coloured code peg matches its placement
in the secret code. The empty hint peg is used to define currently empty peg slots in the feedback section of a
game board row.

Type definition:
𝑙𝑒𝑡 𝐻𝑖𝑛𝑡 = { 𝐸𝑚𝑝𝑡𝑦, 𝑊ℎ𝑖𝑡𝑒, 𝑅𝑒𝑑 }

Type definition in Python:

class Hint_Peg(Enum):

 Empty = 0

 White = 1

 Red = 2

Hint: TypeAlias = Hint_Peg

SecretCode

Explanation:

SecretCode represents the combination of code pegs used by the CodeMaker or CPU to create the code to
be guessed by the CodeBreaker to win the game.
Type definition:

𝑙𝑒𝑡 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒 = 𝐶𝑜𝑑𝑒 ∗ 𝐶𝑜𝑑𝑒 ∗ 𝐶𝑜𝑑𝑒 ∗ 𝐶𝑜𝑑𝑒

Type definition in python:

Secret: TypeAlias = tuple[Code, Code, Code, Code]

Guess

Explanation:

Guess represents the combination of code pegs used by the CodeBreaker to guess the secret code.
Type definition:

𝑙𝑒𝑡 𝐺𝑢𝑒𝑠𝑠 = 𝐶𝑜𝑑𝑒 ∗ 𝐶𝑜𝑑𝑒 ∗ 𝐶𝑜𝑑𝑒 ∗ 𝐶𝑜𝑑𝑒

Type definition in Python:
Guess: TypeAlias = tuple[Code, Code, Code, Code]

Feedback

Explanation:

Feedback represents the combination of marker pegs used by the CodeMaker to indicate whether the Guess
of the CodeBreaker matches the Secret Code.
Type definition:

𝑙𝑒𝑡 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝐻𝑖𝑛𝑡 ∗ 𝐻𝑖𝑛𝑡 ∗ 𝐻𝑖𝑛𝑡 ∗ 𝐻𝑖𝑛𝑡

Type definition in Python:
Feedback: TypeAlias = tuple[Hint, Hint, Hint, Hint]

Row

Explanation:

Row represents a row on the game board where the left section of the row is the CodeBreaker’s Guess and
the right section of the row is the CodeMaker’s Feedback on the Guess.
Type definition:

𝑙𝑒𝑡 𝑅𝑜𝑤 = 𝐺𝑢𝑒𝑠𝑠 ∗ 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘

Type definition in Python:
Row: TypeAlias = tuple[Guess, Feedback]

Board

Explanation:

Board represents the Mastermind game board, made up of rows. We have chosen to represent our game
board using a tuple of 6 rows, indicating the 6 attempts in a normal game; for a harder game, we would
represent the game board as a tuple of 4 rows. A board type can either be a normal board or a hard board.

Type definition:

𝑙𝑒𝑡 𝑁𝑜𝑟𝑚𝑎𝑙𝐵𝑜𝑎𝑟𝑑 = 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤

𝑙𝑒𝑡 𝐻𝑎𝑟𝑑𝐵𝑜𝑎𝑟𝑑 = 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤 ∗ 𝑅𝑜𝑤

𝑙𝑒𝑡 𝐵𝑜𝑎𝑟𝑑 = 𝑁𝑜𝑟𝑚𝑎𝑙𝐵𝑜𝑎𝑟𝑑 ∪ 𝐻𝑎𝑟𝑑𝐵𝑜𝑎𝑟𝑑

Type definition in Python:

Normal_Board: TypeAlias = tuple[Row, Row, Row, Row, Row, Row]

Hard_Board: TypeAlias = tuple[Row, Row, Row, Row]

Board: TypeAlias = Normal_Board | Hard_Board

Player

Explanation:

Player represents a participant of a Mastermind game. A Player could be the human CodeBreaker, a human
CodeMaker or the CPU (a CodeMaker).

Type definition:

𝑙𝑒𝑡 𝑃𝑙𝑎𝑦𝑒𝑟 = {𝐶𝑜𝑑𝑒𝑀𝑎𝑘𝑒𝑟, 𝐶𝑜𝑑𝑒𝐵𝑟𝑒𝑎𝑘𝑒𝑟, 𝐶𝑃𝑈}

Type definition in Python:

@dataclass(eq=True, frozen=True)

class CodeMaker:

 pass

@dataclass(eq=True, frozen=True)

class CodeBreaker:

 pass

@dataclass(eq=True,frozen=True)

class CPU:

 pass

Player : TypeAlias = CodeMaker | CodeBreaker | CPU

Players

Explanation:

Players represents the pair of players that play a Mastermind game. A Players pair can either be a CodeMaker
and CodeBreaker, or a CodeBreaker and CPU.

Type definition:

𝑙𝑒𝑡 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 = (𝐶𝑜𝑑𝑒𝐵𝑟𝑒𝑎𝑘𝑒𝑟, 𝐶𝑜𝑑𝑒𝑀𝑎𝑘𝑒𝑟) ∪ (𝐶𝑜𝑑𝑒𝐵𝑟𝑒𝑎𝑘𝑒𝑟, 𝐶𝑃𝑈)

Type definition in Python:

Players : TypeAlias = tuple[CodeBreaker, CodeMaker] | tuple[CodeBreaker, CPU]

Axiomatic Definitions and Functions

Stage 1 – Planning Phase
Stage 1 will walk through our initial attempt of planning and designing functions for our Mastermind program.
This includes the way in which gameplay and user input was handled, as well as how feedback was generated
in response to certain input.

Main
The main construct serves as the starting point to where the program begins with calling
receiveMainMenuInput where the running prompt for Main Menu option is initiated.

receiveMainMenuInput

Explanation:

A running prompt for the Main Menu Option to be selected enables the User to enter their choice what game
mode they want to play or if they want to simply exit the program. The choice is passed into the appropriate
parser to return the corresponding main menu option.

Depending on what main menu option has been selected, startGameplay is called with the appropriate
arguments passed to it. Arguments such as the board(s), players, and secret code(s) will vary on the game
mode selected.
Axiomatic definition:

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝐼𝑛𝑝𝑢𝑡: 𝑣𝑜𝑖𝑑

𝑙𝑒𝑡 𝑝𝑎𝑟𝑠𝑒𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 = {𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑙𝑎𝑦𝑒𝑟 ∙ 𝑠𝑡𝑎𝑟𝑡𝐺𝑎𝑚𝑒𝑝𝑙𝑎𝑦(𝑥,

𝐵𝑜𝑎𝑟𝑑, 𝑡𝑢𝑝𝑙𝑒[𝑃𝑙𝑎𝑦𝑒𝑟, 𝑃𝑙𝑎𝑦𝑒𝑟], 𝑛𝑜𝑟𝑚𝑎𝑙𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒)} ∪

{𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑎𝑦𝑒𝑟 ∙ 𝑠𝑡𝑎𝑟𝑡𝐺𝑎𝑚𝑒𝑝𝑙𝑎𝑦(𝑥, 𝐵𝑜𝑎𝑟𝑑, 𝑡𝑢𝑝𝑙𝑒[𝑃𝑙𝑎𝑦𝑒𝑟, 𝑃𝑙𝑎𝑦𝑒𝑟],
𝑚𝑎𝑘𝑒𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒)} ∪

{𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 ∙ 𝑠𝑡𝑎𝑟𝑡𝐺𝑎𝑚𝑒𝑝𝑙𝑎𝑦(𝑥, 𝑡𝑢𝑝𝑙𝑒[𝐵𝑜𝑎𝑟𝑑, 𝐵𝑜𝑎𝑟𝑑, 𝐵𝑜𝑎𝑟𝑑],

𝑡𝑢𝑝𝑙𝑒[𝑃𝑙𝑎𝑦𝑒𝑟, 𝑃𝑙𝑎𝑦𝑒𝑟], 𝑡𝑢𝑝𝑙𝑒[𝑛𝑜𝑟𝑚𝑎𝑙𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, ℎ𝑎𝑟𝑑𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, ℎ𝑎𝑟𝑑𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒]}

Graph representation:

Figure 1 Data transformation graph of when receiveMainMenuInput is called.

parseMainMenuOption

Explanation:

When the Player makes a choice in the main menu and it is received, we need a function to turn their string
input into a valid Menu type.
Axiomatic definition:

𝑝𝑎𝑟𝑠𝑒𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛: 𝑠𝑡𝑟𝑖𝑛𝑔 → 𝑀𝑒𝑛𝑢

𝑙𝑒𝑡 𝑝𝑎𝑟𝑠𝑒𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 = {("0", Single Player), ("1", Multiplayer), ("2", Campaign), ("3", Exit)}

∪ {𝑥: 𝑠𝑡𝑟𝑖𝑛𝑔 | 𝑥 ∉ {"0", "1", "2", "3"}(𝑥, 𝑁𝑜𝑛𝑒)}

receiveConfirmationInput

Explanation:

In the case of making a Guess or a custom Secret Code, this function prompts for the confirmation option,
enabling decision making logic external from this function to decide whether to proceed with a certain next
set of instructions or re-prompt the user. The choice is passed into the appropriate parser to convert the
choice into its corresponding value to return the appropriate Boolean.
Axiomatic definition:

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝐼𝑛𝑝𝑢𝑡: 𝑈𝑛𝑖𝑜𝑛[𝐺𝑢𝑒𝑠𝑠] → 𝑏𝑜𝑜𝑙

𝑙𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝐼𝑛𝑝𝑢𝑡 = {𝑥: 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑌𝑒𝑠 ⋅ 𝑇𝑟𝑢𝑒} ∪
{𝑥: 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑁𝑜 ⋅ 𝐹𝑎𝑙𝑠𝑒}

Graph representation:

Figure 2 Data transformation graph of when receiveConfirmationInput is called.

parseConfirmationOption

Explanation:

Once a Player has made a Guess or Secret code, we want to confirm the Player that they are happy with their
choice. After their confirmation is received, we need a function to turn their string into a valid Confirm type.
Axiomatic definition:

𝑝𝑎𝑟𝑠𝑒𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛: 𝑠𝑡𝑟𝑖𝑛𝑔 → 𝐶𝑜𝑛𝑓𝑖𝑟𝑚

𝑙𝑒𝑡 𝑝𝑎𝑟𝑠𝑒𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 = {("y", 𝑌𝑒𝑠), ("n", 𝑁𝑜)} ∪
{𝑥: 𝑠𝑡𝑟𝑖𝑛𝑔 | 𝑥 ∉ {"𝑌", "𝑦", "𝑁", "𝑛"} ∙ (𝑥, 𝑁𝑜𝑛𝑒)}

receiveCodePegInput

Explanation:

This function is responsible for receiving the user’s input for a Code peg and parsing it by calling
parseCodePegOption. It will display a message regarding what Code peg the Player has chosen, and return
the Code peg. Until the Player chooses a valid Code peg, this function will not be exited.
Axiomatic definition:

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑑𝑒𝑃𝑒𝑔𝐼𝑛𝑝𝑢𝑡: 𝑣𝑜𝑖𝑑 → 𝐶𝑜𝑑𝑒

Graph representation:

Figure 3 Data transformation graph of when receiveCodePegInput is called.

parseCodePegInput

Explanation:

After a Code peg is chosen by the Player and received, their string input must be turned into a valid Code
type.
Axiomatic definition:

𝑝𝑎𝑟𝑠𝑒𝐶𝑜𝑑𝑒𝑃𝑒𝑔𝑂𝑝𝑡𝑖𝑜𝑛: 𝑠𝑡𝑟𝑖𝑛𝑔 → 𝐶𝑜𝑑𝑒

𝑙𝑒𝑡 𝑝𝑎𝑟𝑠𝑒𝐶𝑜𝑑𝑒𝑃𝑒𝑔𝑂𝑝𝑡𝑖𝑜𝑛 = {("1", Orange), ("2", Green), ("3", Blue), ("4", Yellow),

("5", Purple), ("6", Brown)} ∪ {𝑥: 𝑠𝑡𝑟𝑖𝑛𝑔 | 𝑥 ∉ {"1", "2", "3", "4", "5", "6"} ∙ (𝑥, 𝑁𝑜𝑛𝑒)}

str

Explanation:

Throughout gameplay, we would want to print the string representation of each Code peg, Hint peg, and
Player.
Axiomatic definition:

𝑠𝑡𝑟: 𝐶𝑜𝑑𝑒 ∪ 𝐻𝑖𝑛𝑡 ∪ 𝑃𝑙𝑎𝑦𝑒𝑟 → 𝑠𝑡𝑟𝑖𝑛𝑔

generateSecretCode

Explanation:

This function takes in the MainMenuOption in order to govern how the SecretCode is formulated. Using the
available Code Pegs, Singleplayer would generate a normal combination, Multiplayer prompts for 4 Code
values through receiveCodePegInput, and Campaign will generate 3 normal combinations and return them
as a tuple due to the staged nature of the gameplay.
Axiomatic definition:

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 →
𝑈𝑛𝑖𝑜𝑛[𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑡𝑢𝑝𝑙𝑒[𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒]]

startSinglePlayer

Explanation:

Creating a separate function for Single Player would begin with generating the appropriate Secret Code. The
guessing process is then initiated to prompt for the 4 Code Pegs, which will then be used to generate
Feedback and the game’s finished state. The Board is then updated and displayed with the recent guess and
feedback made. Using the game’s finished state, decision making to whether the whole sequence of
instructions is to be repeated is governed or if the game is ended early to announce the overall winner.

startMultiplayer

Explanation:

Similarly to how startSinglePlayer, however, when it comes to generating the Secret Code, the user input is
required.

getFeedback

Explanation:

In a Mastermind game, along with the CodeBreaker’s Guess, the Guess’s Feedback is also shown on the
game Board. In getFeedback, we want to create a tuple of four Code pegs, consisting of Red, White, and
Empty hint pegs depending on how close the CodeBreaker’s Guess is to the Secret code.
Axiomatic definition:

𝑔𝑒𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘: 𝐺𝑢𝑒𝑠𝑠, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒 → (𝑏𝑜𝑜𝑙, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘)

𝑙𝑒𝑡 𝑔𝑒𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = {𝑎: 𝐺𝑢𝑒𝑠𝑠; 𝑏: 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒 | 𝑎 == 𝑏 ∙ (𝑇𝑟𝑢𝑒, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘)}

∪ {𝑎: 𝐺𝑢𝑒𝑠𝑠; 𝑏: 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒 | 𝑎 ! = 𝑏 ∙ (𝐹𝑎𝑙𝑠𝑒, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘)}

displayBoard

Explanation:

This function displays the board of the current game. It will take in the Board and output it in the terminal, not
returning anything.
Axiomatic definition:

𝑑𝑖𝑠𝑝𝑙𝑎𝑦𝐵𝑜𝑎𝑟𝑑: 𝐵𝑜𝑎𝑟𝑑 → 𝑣𝑜𝑖𝑑

Display:

Figure 4 What we want the board to look like when displayed.

printInColour

Explanation:

This function returns a string containing the corresponding Code or Hint peg and their ANSI escape code
colour’s string. For Empty Code and Hint pegs, we don’t want any string printed when displayBoard is called,
so we assign them a blank.
Axiomatic definition:

𝑝𝑟𝑖𝑛𝑡𝐼𝑛𝐶𝑜𝑙𝑜𝑢𝑟: 𝐶𝑜𝑑𝑒 ∪ 𝐻𝑖𝑛𝑡 → 𝑠𝑡𝑟𝑖𝑛𝑔

𝑙𝑒𝑡 𝑝𝑟𝑖𝑛𝑡𝐼𝑛𝐶𝑜𝑙𝑜𝑢𝑟 = {𝑥: 𝐶𝑜𝑑𝑒 ∪ 𝐻𝑖𝑛𝑡 | 𝑥 = 𝑂𝑟𝑎𝑛𝑔𝑒 ∙ "\033[38;5;208morange\033[0m"

⋁ 𝑥 = 𝐺𝑟𝑒𝑒𝑛 ∙ "\033[38;5;82mgreen\033[0m"

∨ 𝑥 = 𝐵𝑙𝑢𝑒 ∙ "\033[28;5;12mblue\033[0m"
∨ 𝑥 = 𝑌𝑒𝑙𝑙𝑜𝑤 ∙ "\033[28;5;184myellow\033[0m"
∨ 𝑥 = 𝑃𝑢𝑟𝑝𝑙𝑒 ∙ "\033[28;5;134mpurple\033[0m"

∨ 𝑥 = 𝐵𝑟𝑜𝑤𝑛 ∙ "\033[28;5;94mbrown\033[0m"
∨ 𝑥 = 𝑊ℎ𝑖𝑡𝑒 ∙ "\033[28;5;15mwhite\033[0m"

∨ 𝑥 = 𝑅𝑒𝑑 ∙ "\033[28;5;124mred\033[0m"

∨ 𝑥 = 𝐸𝑚𝑝𝑡𝑦 ∙ " "}

Display:

Figure 5 What we want the return strings to look like when printed.

updateBoard

Explanation:

Using the Guess made by the CodeBreaker and generated Feedback, a Row can be created in the form of a
tuple containing them. This Row can be appended on to the existing game board we pass in.

To maintain the declarative aspect of the program, an integer type parameter is used to decide what index of
the game board that the new Row should be added to, without having to use a variable and changing its state
through appending and re-declaration of the variable.
Axiomatic definitions:

𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑜𝑎𝑟𝑑: 𝐵𝑜𝑎𝑟𝑑, 𝐺𝑢𝑒𝑠𝑠, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 → 𝐵𝑜𝑎𝑟𝑑
𝑢𝑝𝑑𝑎𝑡𝑒𝐵𝑜𝑎𝑟𝑑: 𝐵𝑜𝑎𝑟𝑑, 𝐺𝑢𝑒𝑠𝑠, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘, 𝑖𝑛𝑡 → 𝐵𝑜𝑎𝑟𝑑

𝑙𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝐼𝑛𝑝𝑢𝑡 = {𝑥: 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑌𝑒𝑠 ⋅ 𝑇𝑟𝑢𝑒} ∪

{𝑥: 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑁𝑜 ⋅ 𝐹𝑎𝑙𝑠𝑒}

Stage 2 – Improvement Phase
Stage 2 was our revised plan for our Mastermind program. A second stage of planning and design was needed
after discussion with a Tutor, prompting improvement on certain aspects of our implementation, as well as the
need to ensure our program was aligned with the style of declarative and functional programming.

In terms of gameplay, separate functions for game modes has been revised to cluster their functionalities all
into one function instead and will initiate the decision making process.

Initially, we had planned to have huge chunks of code made for each game mode of our Mastermind program,
however, after discussion with a Tutor, it was realised that a better approach would be to make separate
functions that could be reused within the whole program. Instead of having three functions like
SinglePlayerSecret, MultiPlayerSecret, and CampaignSecret, we chose to create individual functions based on
the different ways a Secret code could be made:

- normalSecretCode for automatically generated Secret codes with 4 unique Code pegs
- makeSecretCode for a CodeMaker-made Secret code
- hardSecretCode for automatically generated Secret codes with 2 unique Code pegs and another Code

peg pair

normalSecretCode

Explanation:

For the SinglePlayer mode and stage 1 of the Campaign mode, we want to create a Secret code with no
duplicates, that is easy to guess.
Axiomatic definition:

𝑛𝑜𝑟𝑚𝑎𝑙𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒: 𝑣𝑜𝑖𝑑 → 𝑆𝑒𝑐𝑟𝑒𝑡

makeSecretCode

Explanation:

Prompting for a Secret Code, receiveCodePegInput will prompt for an individual Code Peg choice. Until there
the size of the Secret Code being formulated is of a value of four Code Pegs, the receiveCodePegInput will be
called to prompt for the final Code Peg choice.
Axiomatic definition:

𝑚𝑎𝑘𝑒𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒: 𝑖𝑛𝑡 → 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒

hardSecretCode

Explanation:

For stages 2 and 3 of the Campaign mode, we want to increase the difficulty of guessing the Secret code. So,
for a harder Secret code, we will create a Secret code with 2 unique Code pegs and a Code peg pair of the
same, 3rd unique, colour.
Axiomatic definition:

ℎ𝑎𝑟𝑑𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒: 𝑣𝑜𝑖𝑑 → 𝑆𝑒𝑐𝑟𝑒𝑡

startGameplay

Explanation:

Prior to deciding the amount of guesses available to be made in a single game for a game mode,
startGameplay decides on the flow of how many games are played for a specific game mode. In the case
that Single Player or Multiplayer is selected, only one game is played, whilst Campaign will govern whether or
not another game is played, which depends on the game state of a previous game.
Axiomatic definition:

𝑠𝑡𝑎𝑟𝑡𝐺𝑎𝑚𝑒𝑝𝑙𝑎𝑦: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛,

𝑈𝑛𝑖𝑜𝑛[𝐵𝑜𝑎𝑟𝑑, 𝑡𝑢𝑝𝑙𝑒[𝐵𝑜𝑎𝑟𝑑, 𝐵𝑜𝑎𝑟𝑑, 𝐵𝑜𝑎𝑟𝑑]], 𝑡𝑢𝑝𝑙𝑒[𝑃𝑙𝑎𝑦𝑒𝑟, 𝑃𝑙𝑎𝑦𝑒𝑟],

𝑈𝑛𝑖𝑜𝑛[𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑡𝑢𝑝𝑙𝑒[𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒]], 𝑏𝑜𝑜𝑙, 𝑖𝑛𝑡 → 𝑁𝑜𝑛𝑒

𝑙𝑒𝑡 𝑠𝑡𝑎𝑟𝑡𝐺𝑎𝑚𝑒𝑝𝑙𝑎𝑦 = {𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛 |𝑥 == 𝑆𝑖𝑛𝑔𝑙𝑒𝑃𝑙𝑎𝑦𝑒𝑟 ∨ 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑎𝑦𝑒𝑟 ∙
𝑝𝑙𝑎𝑦𝐺𝑎𝑚𝑒(𝑥, 𝐵𝑜𝑎𝑟𝑑,

𝑡𝑢𝑝𝑙𝑒[𝑃𝑙𝑎𝑦𝑒𝑟, 𝑃𝑙𝑎𝑦𝑒𝑟], 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒)} ∪
{𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛; 𝑦: 𝑏𝑜𝑜𝑙 |𝑥 == 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 ∧ 𝑦 == 𝑇𝑟𝑢𝑒 ∙ 𝑝𝑙𝑎𝑦𝐺𝑎𝑚𝑒(𝑥, 𝑡𝑢𝑝𝑙𝑒[𝐵𝑜𝑎𝑟𝑑],

𝑡𝑢𝑝𝑙𝑒[𝑝𝑙𝑎𝑦𝑒𝑟], 𝑡𝑢𝑝𝑙𝑒[𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒], 1, 𝑖𝑛𝑡)}

playGame

Explanation:

Depending on the game mode chosen, playGame decides whether to let the CodeBreaker make another
Guess whilst governing the limit to the number of guesses that can be within a singular game mode.
Campaign mode uses the stage currently being played do decide when to reduce the number of guesses
available when it comes to the final stage.
Axiomatic definition:

𝑝𝑙𝑎𝑦𝐺𝑎𝑚𝑒: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛, 𝐵𝑜𝑎𝑟𝑑, 𝑡𝑢𝑝𝑙𝑒[𝑃𝑙𝑎𝑦𝑒𝑟, 𝑃𝑙𝑎𝑦𝑒𝑟],
𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑖𝑛𝑡, 𝑖𝑛𝑡 → 𝑡𝑢𝑝𝑙𝑒[𝑏𝑜𝑜𝑙, 𝐵𝑜𝑎𝑟𝑑]

playRound

Explanation:

Assuming we have either started the game or have made a Guess previously, playRound is called to carry out
the set of instructions to make and confirm a Guess to attempt at guessing the Secret Code. When a Guess
is being made, a running prompt occurs to obtain a Code Peg choice through getGuess. We can confirm the
Guess made by calling receiveConfirmationInput, which will run getGuess again if not confirmed.
Confirming will generate Feedback, update the existing Board, display it, and return the current sta te of the
Board and the game.
Axiomatic definition:

𝑝𝑙𝑎𝑦𝑅𝑜𝑢𝑛𝑑: 𝐵𝑜𝑎𝑟𝑑, 𝑆𝑒𝑐𝑟𝑒𝑡, 𝑖𝑛𝑡 → 𝑡𝑢𝑝𝑙𝑒[𝐵𝑜𝑎𝑟𝑑, 𝑏𝑜𝑜𝑙]

𝑙𝑒𝑡 𝑝𝑙𝑎𝑦𝑅𝑜𝑢𝑛𝑑 = {𝑥: 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑦 ∙ 𝑡𝑢𝑝𝑙𝑒[𝐵𝑜𝑎𝑟𝑑, 𝑏𝑜𝑜𝑙]} ∪
{𝑥: 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛 | 𝑥 == 𝑛 ∙ 𝑔𝑒𝑡𝐺𝑢𝑒𝑠𝑠}

endGame

Explanation:

This function will reveal the Secret Code and who has won the game. Using the game’s finished state, we
can govern which of the players of the game session is displayed as winner.

Considering the way in which Campaign mode works, whilst displaying the winner of the overall game, using
the game mode, the current stage being played, and the game’s finished state, we can display appropriately
a message to indicate if a stage has been completed, the campaign game being completed, or failure to
completing the campaign.
Axiomatic definition:

𝑒𝑛𝑑𝐺𝑎𝑚𝑒: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛, 𝑖𝑛𝑡, 𝑏𝑜𝑜𝑙, 𝑃𝑙𝑎𝑦𝑒𝑟𝑠, 𝑆𝑒𝑐𝑟𝑒𝑡 → 𝑣𝑜𝑖𝑑

𝑙𝑒𝑡 𝑒𝑛𝑑𝐺𝑎𝑚𝑒 = {𝑥: 𝑏𝑜𝑜𝑙; 𝑦 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 | 𝑥 == 𝑇𝑟𝑢𝑒 ⋅ 𝑝𝑟𝑖𝑛𝑡(𝑦)} ∪
{𝑥: 𝑏𝑜𝑜𝑙; 𝑦 ∈ 𝑃𝑙𝑎𝑦𝑒𝑟𝑠 | 𝑥 == 𝑇𝑟𝑢𝑒 ⋅ 𝑝𝑟𝑖𝑛𝑡(𝑦)}

𝑙𝑒𝑡 𝑒𝑛𝑑𝐺𝑎𝑚𝑒 = {𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛; 𝑦: 𝑖𝑛𝑡; 𝑧: 𝑏𝑜𝑜𝑙 | 𝑥 == 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 ∧ 𝑦 == 2 ∧
𝑧 == 𝑇𝑟𝑢𝑒 ⋅ 𝑝𝑟𝑖𝑛𝑡()} ∪

{𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛; 𝑦: 𝑖𝑛𝑡; 𝑧: 𝑏𝑜𝑜𝑙 | 𝑥 == 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 ∧ 𝑦 < 2 ∧ 𝑧 == 𝑇𝑟𝑢𝑒 ⋅ 𝑝𝑟𝑖𝑛𝑡()} ∪

{𝑥: 𝑀𝑎𝑖𝑛𝑀𝑒𝑛𝑢𝑂𝑝𝑡𝑖𝑜𝑛; 𝑧: 𝑏𝑜𝑜𝑙 | 𝑥 == 𝐶𝑎𝑚𝑝𝑎𝑖𝑔𝑛 ∧ 𝑧 == 𝑇𝑟𝑢𝑒 ⋅ 𝑝𝑟𝑖𝑛𝑡()}

During our first stage of implementation, we realised we needed to ensure that our program stuck to the
declarative and functional programming style, causing us to start a second planning stage. After this, we agreed
that getFeedback would be made up of smaller functions:

- getRedHints
- getWhiteHints

o checkIfDupe
o checkGuessedCorrectly
o checkAlmostGuessed
o occursOnce
o occursTwice
o checkThroughGuess

- joinHints
- sortHints

getRedHints

Explanation:

This function will return a list of tuples which contain a Boolean value, indicating whether or not the peg was
correctly guessed, as well as the peg that was guessed, for every peg in the CodeBreaker’s Guess.
Axiomatic definition:

𝑔𝑒𝑡𝑅𝑒𝑑𝐻𝑖𝑛𝑡𝑠: 𝐺𝑢𝑒𝑠𝑠, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒 → [(𝑏𝑜𝑜𝑙, 𝐶𝑜𝑑𝑒)]

𝑙𝑒𝑡 𝑔𝑒𝑡𝑅𝑒𝑑𝐻𝑖𝑛𝑡𝑠 = {𝑥: 𝐺𝑢𝑒𝑠𝑠, 𝑦: 𝑆𝑒𝑐𝑟𝑒𝑡 | ∀𝑖 ∈ {0, 1, 2, 3} ⋅

((𝑥[𝑖] = 𝑦[𝑖] ⇒ 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑠𝑡[𝑖] = (𝑇𝑟𝑢𝑒, 𝑥[𝑖]))

∧ (𝑥[𝑖] ≠ 𝑦[𝑖] ⇒ 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑠𝑡[𝑖] = (𝐹𝑎𝑙𝑠𝑒, 𝑥[𝑖]) ⋅ 𝑜𝑢𝑡𝑝𝑢𝑡𝐿𝑖𝑠𝑡}

getWhiteHints

Explanation:

This function recursively assigns Hint pegs to the CodeBreaker’s Guess to get Feedback. It returns a list of
tuples of Boolean and Code, just like the getRedHints function, but for White Hint pegs.

The base case of this function is when there are no elements left in the tuple guessLeft, and the list
runningFeedback is returned.
If the base case has not yet been reached, this function returns a call of itself with the parameters of the
tuple guessLeft, the list runningFeedback (the building of a list containing which pegs can be assigned a
White Hint peg), the Secret code, and the list redPegs.

The 1st list being used as y in this definition is the list runningFeedback.
Axiomatic definition:

𝑐ℎ𝑒𝑐𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝐺𝑢𝑒𝑠𝑠: 𝑡𝑢𝑝𝑙𝑒, 𝑙𝑖𝑠𝑡, 𝑆𝑒𝑐𝑟𝑒𝑡, 𝑙𝑖𝑠𝑡 → 𝑙𝑖𝑠𝑡

𝑙𝑒𝑡 𝑐ℎ𝑒𝑐𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝐺𝑢𝑒𝑠𝑠 = {𝑥: 𝑡𝑢𝑝𝑙𝑒, 𝑦: 𝑙𝑖𝑠𝑡 | 𝑥 = () ∙ 𝑦} ∪
{𝑥: 𝑡𝑢𝑝𝑙𝑒, 𝑦: 𝑙𝑖𝑠𝑡, 𝑧: 𝑆𝑒𝑐𝑟𝑒𝑡, 𝑎: 𝑙𝑖𝑠𝑡 |𝑥 ≠ () ∙ 𝑐ℎ𝑒𝑐𝑘𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝐺𝑢𝑒𝑠𝑠(𝑥, 𝑦, 𝑧, 𝑎)}

𝑔𝑒𝑡𝑊ℎ𝑖𝑡𝑒𝐻𝑖𝑛𝑡𝑠: 𝐺𝑢𝑒𝑠𝑠, 𝑆𝑒𝑐𝑟𝑒𝑡𝐶𝑜𝑑𝑒, 𝑙𝑖𝑠𝑡 → [(𝑏𝑜𝑜𝑙, 𝐶𝑜𝑑𝑒)]

When deciding on which Code pegs can be assigned White Hint pegs, there are many factors to consider in
regard to our current plan:

- Is the Code peg currently being looked at a duplicate in a Secret code generated by hardSecretCode?
- Has the current Code peg already been assigned a Red Hint peg?
- Has the current Code peg already been assigned a White Hint peg?
- If the Code peg occurs twice in the Secret code, have both already been assigned a non -Empty Hint

peg?

Consequently, to ensure that this function leans towards declarative and functional programming,
getWhiteHints is made up of smaller functions:

- checkIfDupe
- checkGuessedCorrectly
- checkAlmostGuessed
- occursOnce
- occursTwice

checkIfDupe

Explanation:

This function returns a Boolean value based on whether the current Code peg being checked from the
CodeBreaker’s Guess is the duplicated peg of a hard mode Secret code (the Secret code in the 2nd and 3rd
stage of a Campaign).
Axiomatic definition:

𝑐ℎ𝑒𝑐𝑘𝐼𝑓𝐷𝑢𝑝𝑒: 𝐶𝑜𝑑𝑒, 𝑆𝑒𝑐𝑟𝑒𝑡 → 𝑏𝑜𝑜𝑙

𝑙𝑒𝑡 𝑐ℎ𝑒𝑐𝑘𝐼𝑓𝐷𝑢𝑝𝑒 = {𝑥: 𝐶𝑜𝑑𝑒, 𝑦: 𝑆𝑒𝑐𝑟𝑒𝑡 | |(∀𝑖 ∈ {0, 1, 2, 3} | 𝑥[𝑖] = 𝑦[𝑖])|= 2 ⋅ 𝑇𝑟𝑢𝑒}

∪ {𝑥: 𝐶𝑜𝑑𝑒, 𝑦: 𝑆𝑒𝑐𝑟𝑒𝑡 | |(∀𝑖 ∈ {0, 1, 2, 3} | 𝑥[𝑖] = 𝑦[𝑖])|≠ 2 ⋅ 𝐹𝑎𝑙𝑠𝑒}

checkGuessedCorrectly

Explanation:

This function ensures that a White Hint will not be assigned to a Code peg that has already been assigned a
Red Hint in the list redPegs. It counts how many times the current Code peg has been correctly matched to
the SecretCode.
Axiomatic definition:

𝑐ℎ𝑒𝑐𝑘𝐺𝑢𝑒𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦: 𝐶𝑜𝑑𝑒, 𝑙𝑖𝑠𝑡 → 𝑖𝑛𝑡

𝑙𝑒𝑡 𝑐ℎ𝑒𝑐𝑘𝐺𝑢𝑒𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦: {𝑥: (𝑇𝑟𝑢𝑒, 𝐶𝑜𝑑𝑒), 𝑦: 𝑙𝑖𝑠𝑡 | 𝑥 ∈ 𝑦 ∙ |(∀𝑖 ∈ {0, 1, 2, 3} | 𝑥[𝑖] = 𝑦[𝑖])|}

∪ {𝑥: (𝑇𝑟𝑢𝑒, 𝐶𝑜𝑑𝑒), 𝑦: 𝑙𝑖𝑠𝑡 | 𝑥 ∉ 𝑦 ∙ 0}

checkAlmostGuessed

Explanation:

This function ensures that a White Hint will not be assigned to a Code peg that has already been assigned a
White Hint in the list runningFeedback. It counts how many times the current Code peg has been almost
matched to the SecretCode in the running feedback of the checkThroughGuess recursive function.
Axiomatic definition:

𝑐ℎ𝑒𝑐𝑘𝐴𝑙𝑚𝑜𝑠𝑡𝐺𝑢𝑒𝑠𝑠𝑒𝑑: 𝐶𝑜𝑑𝑒, 𝑙𝑖𝑠𝑡 → 𝑖𝑛𝑡

𝑙𝑒𝑡 𝑐ℎ𝑒𝑐𝑘𝐴𝑙𝑚𝑜𝑠𝑡𝐺𝑢𝑒𝑠𝑠𝑒𝑑: {𝑥: (𝑇𝑟𝑢𝑒, 𝐶𝑜𝑑𝑒), 𝑦: 𝑙𝑖𝑠𝑡 | 𝑥 ∈ 𝑦 ∙ |(∀𝑖 ∈ {0, 1, 2, 3} | 𝑥[𝑖] = 𝑦[𝑖])|}

∪ {𝑥: (𝑇𝑟𝑢𝑒, 𝐶𝑜𝑑𝑒), 𝑦: 𝑙𝑖𝑠𝑡 | 𝑥 ∉ 𝑦 ∙ 0}

occursOnce
Explanation:

This function checks whether a White Hint peg can be assigned to a Code peg from the CodeBreaker’s
Guess if it only occurs once in the Secret code.

If the Code peg has not already been assigned a Red Hint peg, and has not already been assigned a White
Hint peg, it is valid to assign a White Hint peg to it for feedback.

The first list to be input to this function is the redPegs list containing whether the Code pegs can be assigned
Red Hint pegs or not, and the second list represents the runningFeedback formed within
checkThroughGuess.
Axiomatic definition:

𝑜𝑐𝑐𝑢𝑟𝑠𝑂𝑛𝑐𝑒: 𝐶𝑜𝑑𝑒, 𝑙𝑖𝑠𝑡, 𝑙𝑖𝑠𝑡 → (𝑏𝑜𝑜𝑙, 𝐶𝑜𝑑𝑒)

𝑙𝑒𝑡 𝑜𝑐𝑐𝑢𝑟𝑠𝑂𝑛𝑐𝑒: {𝑥: 𝐶𝑜𝑑𝑒, 𝑦: 𝑙𝑖𝑠𝑡, 𝑧: 𝑙𝑖𝑠𝑡 | 𝑐ℎ𝑒𝑐𝑘𝐺𝑢𝑒𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦(𝑥, 𝑦) = 0 ∧

𝑐ℎ𝑒𝑐𝑘𝐴𝑙𝑚𝑜𝑠𝑡𝐺𝑢𝑒𝑠𝑠𝑒𝑑(𝑥, 𝑧) = 0 ⋅ (𝑇𝑟𝑢𝑒, 𝑥)} ∪
{𝑥: 𝐶𝑜𝑑𝑒, 𝑦: 𝑙𝑖𝑠𝑡, 𝑧: 𝑙𝑖𝑠𝑡 | ¬ (𝑐ℎ𝑒𝑐𝑘𝐺𝑢𝑒𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦(𝑥, 𝑦) = 0 ∧

𝑐ℎ𝑒𝑐𝑘𝐴𝑙𝑚𝑜𝑠𝑡𝐺𝑢𝑒𝑠𝑠𝑒𝑑(𝑥, 𝑧) = 0 ⋅ (𝐹𝑎𝑙𝑠𝑒, 𝑥)}

occursTwice

Explanation:

This function checks whether a White Hint peg can be assigned to a Code peg from the CodeBreaker’s guess
if it occurs twice in the SecretCode (in this case, this will mean it is part of the hard Secret code).

If the peg has not already been assigned two Red Hint pegs or two White Hint pegs or one Red Hint and one
White Hint peg, it is valid to assign a White Hint peg to it for feedback.

The first list to be input to this function is the redPegs list containing whether the Code pegs can be assigned
Red Hint pegs or not, and the second list represents the runningFeedback formed within
checkThroughGuess.
Axiomatic definition:

𝑜𝑐𝑐𝑢𝑟𝑠𝑇𝑤𝑖𝑐𝑒: 𝐶𝑜𝑑𝑒, 𝑙𝑖𝑠𝑡, 𝑙𝑖𝑠𝑡 → (𝑏𝑜𝑜𝑙, 𝐶𝑜𝑑𝑒)

𝑙𝑒𝑡 𝑜𝑐𝑐𝑢𝑟𝑠𝑂𝑛𝑐𝑒: {𝑥: 𝐶𝑜𝑑𝑒, 𝑦: 𝑙𝑖𝑠𝑡, 𝑧: 𝑙𝑖𝑠𝑡| 𝑐ℎ𝑒𝑐𝑘𝐺𝑢𝑒𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦(𝑥, 𝑦) +

𝑐ℎ𝑒𝑐𝑘𝐴𝑙𝑚𝑜𝑠𝑡𝐺𝑢𝑒𝑠𝑠𝑒𝑑(𝑥, 𝑧) < 2 ⋅ (𝑇𝑟𝑢𝑒, 𝑥)} ∪
{𝑥: 𝐶𝑜𝑑𝑒, 𝑦: 𝑙𝑖𝑠𝑡, 𝑧: 𝑙𝑖𝑠𝑡 | ¬ (𝑐ℎ𝑒𝑐𝑘𝐺𝑢𝑒𝑠𝑠𝑒𝑑𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦(𝑥, 𝑦) +

𝑐ℎ𝑒𝑐𝑘𝐴𝑙𝑚𝑜𝑠𝑡𝐺𝑢𝑒𝑠𝑠𝑒𝑑(𝑥, 𝑧) < 2 ⋅ (𝐹𝑎𝑙𝑠𝑒, 𝑥)}

formatRow

Explanation:

This function was created in the second stage of planning; it aims to format a given Row from a Board so it
can be displayed by the displayBoard function.
Axiomatic definition:

𝑓𝑜𝑟𝑚𝑎𝑡𝑅𝑜𝑤: 𝑅𝑜𝑤 → 𝑙𝑖𝑠𝑡[𝑠𝑡𝑟𝑖𝑛𝑔]

Display:

Figure 6 What we want the row to look like when displayed.

formatPeg

Explanation:

This function was also created in the second stage of planning; it aims to format a given Code or Hint peg so
it can be displayed by the displayBoard function.
Axiomatic definition:

𝑓𝑜𝑟𝑚𝑎𝑡𝑃𝑒𝑔: 𝐶𝑜𝑑𝑒 ∪ 𝐻𝑖𝑛𝑡 → 𝑠𝑡𝑟𝑖𝑛𝑔

𝑙𝑒𝑡 𝑓𝑜𝑟𝑚𝑎𝑡𝑃𝑒𝑔: {𝑥: 𝐶𝑜𝑑𝑒 ∪ 𝐻𝑖𝑛𝑡 | |𝑠𝑡𝑟(𝑥)| = 6 ⋅ ("| " + 𝑝𝑟𝑖𝑛𝑡𝐼𝑛𝐶𝑜𝑙𝑜𝑢𝑟(𝑥) + " ")}

∪ {𝑥: 𝐶𝑜𝑑𝑒 ∪ 𝐻𝑖𝑛𝑡 | |𝑠𝑡𝑟(𝑥)| ≠ 6 ⋅ ("|" + 𝑝𝑟𝑖𝑛𝑡𝐼𝑛𝐶𝑜𝑙𝑜𝑢𝑟(𝑥) + (" " ∗ (6 − |𝑠𝑡𝑟(𝑥)|)) + " ")}

Display:

Figure 7 What the formatted peg would look like when displayed.

The Mastermind Function Dependency Graph

Our implementation of a Mastermind program can be represented by this function dependency graph.

Figure 8 A dependency graph indicating which functions are needed to fully execute a certain function.

T2 – Program Implementation

Imports
The following imports were made:

Module Name Purpose

Sys Call for system exit.
Random Generates random samples for Secret codes.
Dataclass Ensure that some type classes such as Player types are immutable.
Enum To enumerate type classes such as Code, Hint, Confirmation, and Menu.
Type, TypeAlias, Union Aids with Type hinting.

from __future__ import annotations

import sys, random

from dataclasses import dataclass

from enum import Enum

from typing import Type, TypeAlias, Union

Types
For all the types in T1, we stuck to our plan. Therefore, the Python code snippets in T1 are the same as you will
see in T2.

Menu
For the game options / main menu options, we decided to use enums to allow for an easy error handling of
input – the Player only needs to input 1, 2, 3, or 4 when prompted in the main menu to select a Menu option.

class Main_Menu_Option(Enum):

 Single_Player = 1

 Multiplayer = 2

 Campaign = 3

 Exit = 4

Menu: TypeAlias = Main_Menu_Option

Confirm
Again, we did the same for the Confirm type. In parseConfirmationOption, we use the built-in strip method to
aid in easy error handling. So, the Player can input Y, N, y, n for a valid Confirm option.

class Confirmation_Option(Enum):

 Yes = 'y'

 No = 'n'

Confirm: TypeAlias = Confirmation_Option

Code
We used enums to allow the user to only input 1, 2, 3, 4, 5, 6 when selecting a Code peg for their Guess or
Secret code choice.

class Code_Peg_Option(Enum):

 Empty = 0

 Orange = 1

 Green = 2

 Blue = 3

 Yellow = 4

 Purple = 5

 Brown = 6

Code: TypeAlias = Code_Peg_Option

Hint
We also used enums for Hint pegs, although after some reflection, we could have used a normal class, like we
did with the Player type.

class Hint_Peg(Enum):

 Empty = 0

 White = 1

 Red = 2

Hint: TypeAlias = Hint_Peg

Player, and Players
For Player, we used frozen data classes to ensure that they are immutable. We also made the Players type
immutable by defining them using tuples.

@dataclass(eq=True, frozen=True)

class CodeMaker:

 pass

@dataclass(eq=True, frozen=True)

class CodeBreaker:

 pass

@dataclass(eq=True,frozen=True)

class CPU:

 pass

Player : TypeAlias = CodeMaker | CodeBreaker | CPU

Players : TypeAlias = tuple[CodeBreaker, CodeMaker] | tuple[CodeBreaker, CPU]

Secret
We composed Secret code using four Code peg types, encasing them within a tuple, making them
unchangeable.

Secret: TypeAlias = tuple[Code, Code, Code, Code]

Guess
Like for Secret, we made Guess in the same way, using a tuple of four Code peg types.

Guess: TypeAlias = tuple[Code, Code, Code, Code]
Table 1 The Python implementation of the Guess type.

Feedback
Similarly, we made Feedback using a tuple of four Hint peg types.

Feedback: TypeAlias = tuple[Hint, Hint, Hint, Hint]
Table 2 The Python implementation of the Feedback type.

Row
To represent a Row, we merged Guess and Feedback in a tuple, just like they are displayed on the game Board.

Row: TypeAlias = tuple[Guess, Feedback]
Table 3 The Python implementation of the Row type.

NormalBoard, HardBoard, and Board
In our program, we have a NormalBoard, and a HardBoard. A NormalBoard is a tuple made up of six Rows; a
HardBoard is a tuple made up of four Rows.

A Board type can either be a NormalBoard or a HardBoard.

Normal_Board: TypeAlias = tuple[Row, Row, Row, Row, Row, Row]

Hard_Board: TypeAlias = tuple[Row, Row, Row, Row]

Board: TypeAlias = Normal_Board | Hard_Board
Table 4 The Python implementation of the NormalBoard, HardBoard, and Board types.

Program Functions

main
Explanation:
The construct ensures that the beginning of all instructions to be followed occur within it.
The mastermind_intro is displayed along with receive_main_menu_input, which is constantly
called to initiate prompting for the Main_Menu_Option This is so that even after a
Mein_Menu_Option is selected and has finished executing the start_gamepla, it reverts back to
prompting for the Main_Menu_Option.

Code Snippet:
if __name__=="__main__":

 print(mastermind_intro)

 while True:

 receive_main_menu_input()

receiveMainMenuInput
The function runs an ongoing input prompt for the User to enter a value.

Decision
Logic
Step

Description

1 If a value of 1 for Single_Player is the selected_option, start_gameplay is called
passing selected_option, empty_normal_board, a tuple containing players
CodeBreaker and CPU, and a normal_secret_code call.

2 If a value of 2 for Multiplayer is the selected_option, make_secret_code is called to
prompt the Code Maker. Once a Secret is returned, receive_confirmation_input is
called passing the custom_secret_code to it.

2.1 If confirmation_choice is True, check_two_dupe_secret and check_one_dupe_secret
are called to check the Secret Code before calling start_gameplay to pass the
selected_option, empty_normal_board, a tuple containing CodeBreaker and
CodeMaker, and custom_secret_code.

2.2 If confirmation_choice is False, make_secret_code is called again until
confirmation_choice is True.

3 If a value of 3 for Campaign is the selected_option, start_gameplay is called passing
selected_option, a tuple containing two empty_normal_board and
empty_hard_board, a tuple containing players CodeBreaker and CPU, and a tuple
containing a normal_secret_code call and two hard_secret_code calls.

4 If a value of 4 for Exit is the selected_option, sys.exit() is called and ends the whole
program.

def receive_main_menu_input() -> None:

 print(main_menu_options)

 selected_option = Main_Menu_Option.parse_main_menu_option(input("> "))

 print()

 match selected_option:

 case Main_Menu_Option.Single_Player:

 start_gameplay(selected_option, empty_normal_board, (CodeBreaker(), CPU()),

normal_secret_code())

 case Main_Menu_Option.Multiplayer:

 while True:

 print("\nCODEMAKER: ENTER SECRET CODE -------------------- ")

 custom_secret_code: Secret = make_secret_code()

 confirmation_choice: bool =

receive_confirmation_input(custom_secret_code)

 if confirmation_choice == True:

 if check_two_dupe_secret(custom_secret_code) == True:

 print(f"\nINVALID MESSAGE INPUT --------------------\nYou can't

have more than two of the same Code Peg in the Secret Code.")

 else:

 if check_one_dupe_pair_secret(custom_secret_code) == True:

 print(f"\nINVALID MESSAGE INPUT --------------------\nYou

can't have more than one pair of Duplicates in the Secret Code.")

 else:

 break

 start_gameplay(selected_option, empty_normal_board, (CodeBreaker(),

CodeMaker()), custom_secret_code)

 case Main_Menu_Option.Campaign:

 start_gameplay(selected_option, (empty_normal_board, empty_normal_board,

empty_hard_board), (CodeBreaker(), CPU()), (normal_secret_code(), hard_secret_code(),

hard_secret_code()))

 case Main_Menu_Option.Exit:

 print("Exiting Mastermind...")

 sys.exit()

parseMainMenuOption
Explanation:
This function is a method of the MainMenuOption class that parses the user’s input, ensuring they
input a ‘1’, ‘2’, ‘3’, ‘4’, when prompted in receiveMainMenuInput. The return value is then checked
in receiveMainMenuInput.

Code Snippet:
@classmethod

 def parse_main_menu_option(cls : Type[Main_Menu_Option], input : str) ->

Main_Menu_Option:

 try:

 main_menu_option: Main_Menu_Option = Main_Menu_Option(int(input))

 return main_menu_option

 except ValueError:

 print("That is an invalid main menu choice.")

 return None

receiveConfirmationInput
Explanation:
This function displays the Guess or Secret Code made before calling this function and runs an
ongoing input for the Confirmation_Option to be entered.
If selected_option is Yes, Boolean True is returned to indicate the Guess or Secret Code made is to
be confirmed. Alternatively, if No, Boolean True is returned to indicate a decline to the Guess or
Secret Code made.

Code Snippet:
def receive_confirmation_input(choice: Union[Guess, Secret]) -> bool:

 """

 receives the Player's parsed Confirm_Option and prints out the appropriate message

to the command-line

 Parameters:

 choice (Union[Guess, Secret]) - The user's choice of Guess / Secret code

 Returns:

 bool - Whether the Player chose Yes or No

 """

 while True:

 print(confirmation_options)

 print("Your Choice: ")

 print(*(print_in_colour(peg) for peg in choice))

 print("Are you sure you want to continue?")

 selected_option = Confirmation_Option.parse_confirmation_option(input("> "))

 print()

 match selected_option:

 case Confirmation_Option.Yes:

 print("\nChoice Confirmed.")

 return True

 case Confirmation_Option.No:

 print("\nChoice Cancelled.")

 return False

parseConfirmationOption
Explanation:
This function displays the Guess or Secret Code made before calling this function and runs an
ongoing input for the Confirmation_Option to be entered.
If selected_option is Yes, Boolean True is returned to indicate the Guess or Secret Code made is to
be confirmed. Alternatively, if No, Boolean True is returned to indicate a decline to the Guess or
Secret Code made.

Code Snippet:

@classmethod

 def parse_confirmation_option(cls : Type[Confirmation_Option], input : str) ->

Confirmation_Option:

 try:

 lower_confirmation_input: str = input.lower().strip()

 confirmation_option: Confirmation_Option =

Confirmation_Option(lower_confirmation_input)

 return confirmation_option

 except ValueError:

 print("That is an invalid confirmation choice.")

 return None

receiveCodePegInput
Explanation:
This function receives the Player’s parsed Code peg input and prints the appropriate message to
the command-line, returning the Code peg type to its parent function.
A while loop runs until the Player chooses a valid CodePegOption (not None).

Code Snippet:
def receive_code_peg_input() -> Code:

 while True:

 print(code_peg_options)

 selected_option = Code_Peg_Option.parse_code_peg_option(input("> "))

 if selected_option:

 match selected_option:

 case Code_Peg_Option.Orange:

 print("You have chosen an " + print_in_colour(selected_option) + "

peg.")

 case _:

 print("You have chosen a " + print_in_colour(selected_option) + "

peg.")

 return selected_option

 else:

 print("Invalid peg choice.")

parseCodePegOption
Explanation:
This function is a method of the CodePegOption class that parses the user’s input, ensuring they
input a ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’ when prompted for their Code peg input. The return value is then
checked in receiveCodePegInput.

Code Snippet:
@classmethod

 def parse_code_peg_option(cls : Type[Code_Peg_Option], input : str) ->

Code_Peg_Option:

 try:

 code_peg_option: Code_Peg_Option = Code_Peg_Option(int(input))

 match code_peg_option:

 case Code_Peg_Option.Empty:

 return None

 case _:

 return code_peg_option

 except ValueError:

 print("That is an invalid code peg choice.")

 return None

__str__
For the types Code, Hint and Player, throughout the program we have to reference to them by their string
representations, hence, within their respective classes we made a __str__ function.

def __str__(self) -> str:

 return self.name.lower()

def __str__(self) -> str:

 return self.name.lower()

def __str__(self) -> str:

 return "Code Maker"

def __str__(self) -> str:

 return "Code Breaker"

def __str__(self) -> str:

 return "CPU"

normalSecretCode
Explanation:
This is used to generate a SecretCode for SingePlayer, Multiplayer and round 1 of Campaign game
modes. It stores all possible Code pegs that can be chosen from (from 1-6) in a variable called
validCodePegs and chooses 4 unique random Code pegs from that list to make up the new
SecretCode.
List comprehension is used to list which Code pegs are valid to choose from, being stored in
validCodePegs.
Random is then used from import to generate a sample of 4 unique Code pegs from the
validCodePegs list, being stored as a tuple in newSecretCode to form a Secret code.

Code Snippet:
def normal_secret_code() -> Secret:

 valid_code_pegs: list[Code] = [peg for peg in Code if str(peg) != "empty"]

 newSecretCode: Secret = tuple(random.sample(valid_code_pegs, k=4))

 return newSecretCode

makeSecretCode
Explanation:

This function prompts for four Code_Peg_Option by calling receive_code_peg_input within a tuple
and joining the return value of recursively calling make_secret_code with secret_size incremented
by 1 passed into it.
If the secret_size equals 4, receive_code_peg_input will be called for the fourth and final time
before returning the Secret.

Code Snippet:
def make_secret_code(secret_size: int = 1) -> Secret:

 print()

 print(f"---------- CODE PEG CHOICE NO.#{secret_size} ----------")

 if secret_size == 4:

 return (receive_code_peg_input(),)

 else:

 return (receive_code_peg_input(),) + make_secret_code(secret_size+1)

hardSecretCode
Explanation:
This is used to generate a SecretCode in rounds 2 and 3 of the Campaign mode, consisting of 2
unique Code pegs, and a single pair of duplicate Code pegs.

Again, list comprehension is used to list which Code pegs are valid to choose from, being stored in
validCodePegs.
Random is used from import to generate a sample of 3 unique Code pegs and stores this in the list
noDuplicateSample.
The third peg in noDuplicateSample is taken and added onto noDuplicateSample, stored in
duplicateCode.
This list is shuffled by random from import, utilising the sample function, and turned into a tuple to
form a Secret code in newSecretCode.

Code Snippet:
def hard_secret_code() -> Secret:

 valid_code_pegs: list[Code] = [peg for peg in Code if peg != Code(0)]

 no_duplicate_sample: list[Code] = random.sample(valid_code_pegs, k=3)

 duplicate_code: list[Code] = no_duplicate_sample + [no_duplicate_sample[2]]

 newSecretCode: Secret = tuple(random.sample(duplicate_code, k=4))

 return newSecretCode

startGameplay
Explanation:
This function decides on the way secret code is generated as well as the amount of games sessions
to be played. Singleplayer and Multiplayer executes only one game session before displaying the
final game results, whereas Campaign will go through the process of checking the success status
returned to game_stage in order to decide whether another game session is to be executed or to
display the final game results.

Steps Description

1 IF MainMenuOption is Single_Player OR Multiplayer:
1.1 The playGame function is called within a variable passing a game_mode, game_board,

tuple containing two Player types, and secret_code.

1.2 Assuming that we have the a Boolean type value returned from calling playGame, we then

call end_game passing the Boolean type value and the players.

1.3 The Terminal will display the overall winner of that gameplay.

1.4 The startGameplay function ends.

2 IF MainMenuOption is “Campaign” and campaign_flag == True:
2.1 The playGame function is called within a variable passing a game_mode, a specific Board

from game_board using current_stage to access an index value, players, and a specific
Secret from secret_code to access an index value.

2.2 IF the game’s finished state from game_stage is False OR current_stage being played is 2,
display the current board and end_game.

2.3 ELSE call start_gameplay passing the game_mode, game_board, players, secret_code,
the game finished state from game_stage as the campaign_flag, and current_stage.

def start_gameplay(game_mode: Main_Menu_Option, game_board: Union[Board, tuple[Board,

Board, Board]], players: tuple[Player, Player], secret_code: Union[Secret, tuple[Secret,

Secret, Secret]], campaign_flag: bool = True, current_stage: int = 0) -> None:

 print(f"""

 --| {game_mode.name.upper()} |----------------

 --| GAME MODE |---------------------------

 --|_______________|---------------------------

 """)

 if game_mode == Main_Menu_Option.Single_Player or game_mode ==

Main_Menu_Option.Multiplayer:

 game_session: tuple[bool, Board] = play_game(game_mode, game_board, players,

secret_code)

 display_board(game_session[1])

 end_game(game_mode, current_stage, game_session[0], players, secret_code)

 elif game_mode == Main_Menu_Option.Campaign and campaign_flag == False:

 end_game(game_mode, current_stage, campaign_flag, players,

secret_code[current_stage])

 elif game_mode == Main_Menu_Option.Campaign and campaign_flag == True:

 print(f"-- STAGE

{current_stage+1} --")

 game_stage: tuple[bool, Board] = play_game(game_mode, game_board[current_stage],

players, secret_code[current_stage], 1, current_stage)

 if game_stage[0] == False:

 display_board(game_stage[1])

 end_game(game_mode, current_stage, game_stage[0], players,

secret_code[current_stage])

 else:

 if current_stage == 2:

 end_game(game_mode, current_stage, campaign_flag, players,

secret_code[current_stage])

 else:

 end_game(game_mode, current_stage, game_stage[0], players,

secret_code[current_stage])

 return start_gameplay(game_mode, game_board, players, secret_code,

game_stage[0], current_stage+1)

playGame
Explanation:
This function decides considering the game_mode selected how many attempts are available
within a specific game. Singleplayer and Multiplayer limit to 6 guess attempts available, whereas
Campaign, depending on the current stage being played will decide the whether to provide 6 or 4
guess attempts available.
Steps Description

1 IF game_mode is Single_Player OR Multiplayer OR Campaign AND current_stage is 0 OR
1:

1.1 IF the turn_count is above the set number of 7 or game_finished is True:
A tuple containing the game_finished Boolean and the current game_board state is
returned.

1.2 ELSE if both conditions are not the case, then playRound is called passing the current
game_board, secret_code, and turn_count.

1.3 play_game is recursively called passing the parameters, however, the only different
parameters passed through are the returned updated Board from round for the Board
argument, the turn_count incremented by 1, and the bool returned into round as the
game_finished argument.
Steps 1.2 and 1.3 continue to be the case if the amount of guesses has not reached 7 or
Game’s Finished State is not True.

2 IF game_mode is Campaign AND current_stage is 2:
2.1 IF the turn_count is above the set number of 5 or game_finished is True:

A tuple containing the game_finished Boolean and the current game_board state is
returned.

2.2 ELSE if both conditions are not the case, then playRound is called passing the current
game_board, secret_code, and turn_count.

2.3 play_game is recursively called passing the parameters, however, the only different
parameters passed through are the returned updated Board from round for the Board
argument, the turn_count incremented by 1, and the bool returned into round as the
game_finished argument.

Steps 2.2 and 2.3 continue to be the case if the amount of guesses has not reached 5 or
Game’s Finished State is not True.

def play_game(game_mode: Main_Menu_Option, game_board: Board, players: tuple[Player,

Player], secret_code: Secret, turn_count: int = 1, current_stage: int = 0,

game_finished: bool = False) -> tuple[bool, Board]:

 if game_mode == Main_Menu_Option.Single_Player or game_mode ==

Main_Menu_Option.Multiplayer or (game_mode == Main_Menu_Option.Campaign and

current_stage == 0 or current_stage == 1):

 if turn_count == 7 or game_finished == True:

 return (game_finished, game_board)

 else:

 print(f"\n---------- GUESS ATTEMPT NO.#{turn_count} ----------")

 round: tuple[Board, bool] = play_round(game_board, secret_code, turn_count)

 return play_game(game_mode, round[0], players, secret_code, turn_count+1,

current_stage, round[1])

 elif game_mode == Main_Menu_Option.Campaign and current_stage == 2:

 if turn_count == 5 or game_finished == True:

 return (game_finished, game_board)

 else:

 print(f"\n---------- GUESS ATTEMPT NO.#{turn_count} ----------")

 round: tuple[Board, bool] = play_round(game_board, secret_code, turn_count)

 return play_game(game_mode, round[0], players, secret_code, turn_count+1,

current_stage, round[1])

playRound
Explanation:
This function runs the process of completing a single Guess to be made with the following steps
being subsequent to it:

• Confirming the Guess
• Generating appropriate Feedback
• Updating the existing Board
• Returning the updated version of the game board with game’s finished state

Steps Description

1 Game Board is displayed through calling the display_board passing the Board type value.

2 The current Game Board appearance is displayed on Terminal.

3 A running guess prompt is initiated through get_guess within a variable to store the soon to
be returned Guess value.

4 Confirmation choice is then prompted through calling receive_confirmation_input.
If confirmation_choice == True, then steps 5 onwards occur. Alternatively, if
confirmation_choice == False, then the process goes back to step 1 until
confirmation_choice == True. This provides the option in the case that the Code Breaker
changes their mind.

5 Feedback will then be generated through get_feedback being called within another
variable to store a Feedback value.

6 Game Board value is updated by calling update_board within a variable to store the soon to
be returned updated version of the Board value. Values to be passed are the existing
Board, new Guess, and generated Feedback as arguments.

7 Return statement is made to return the updated version of the Board value and the Game’s
Finished State as a Boolean value produced from calling getFeedback.

def play_round(game_board: Board, secret_code: Secret, turn_count: int) -> tuple[Board,

bool]:

 while True:

 display_board(game_board)

 new_guess: Guess = get_guess()

 confirmation_choice: Confirmation_Option = receive_confirmation_input(new_guess)

 if confirmation_choice == True:

 new_feedback: Feedback = get_feedback(new_guess, secret_code)

 updated_board: Board = update_board(game_board, new_guess, new_feedback[1],

turn_count)

 display_board(updated_board)

 return (updated_board, new_feedback[0])

endGame
Explanation:
This function displays the Secret Code alongside the appropriate display of who won a game
overall.
If the game_finished is True, the CodeBreaker is displayed to have won the game, whilst
alternatively the CPU.
In the case of the game_mode being Campaign an additional result message is displayed during
stage completions or fails or completing the whole campaign mode.
If game_mode is Campaign, current_stage is 2, and game_finished is True, the campaign mode is
displayed to be successfully completed.
If the same condition is met for game_mode and game_finished, however the current_stage is
less than 2, its displayed that you are to advance to the next level of the campaign mode.
If the same condition is met for game_mode, however, game_finished is False, its displayed that
the player has failed campaign mode.

Code Snippet:
def end_game(game_mode: Main_Menu_Option, current_stage: int, game_finished: bool,

players: Players, secret: Secret) -> None:

 print("\n---------- SECRET CODE ----------")

 print(*(print_in_colour(peg) for peg in secret))

 print("\n---------- FINAL RESULTS ----------")

 match game_finished:

 case True:

 print(f"\n{str(players[0])} has won the game!")

 case False:

 print(f"\n{str(players[1])} has won the game!")

 # if game_mode is Campaign

 if game_mode == Main_Menu_Option.Campaign and current_stage == 2 and game_finished

== True:

 print("You have successfully completed your Campaign game!")

 elif game_mode == Main_Menu_Option.Campaign and current_stage < 2 and

game_finished == True:

 print("Well done! You have advanced to the next stage in your Campaign game!")

 elif game_mode == Main_Menu_Option.Campaign and game_finished == False:

 print("You have failed your Campaign game!")

getFeedback
Explanation:
This function takes in the CodeBreaker’s Guess and the Secret code to return whether the game
has ended, and the Feedback regarding whether the CodeBreaker has guessed the Secret code
correctly or not.
It first checks for the Red Hint pegs for Feedback, then the White Hint pegs for Feedback, and
joins these Feedback lists, prioritising Red Hint pegs over White Hint pegs, filling in the rest of the
pegs with Empty Hint pegs.

First, it checks whether guess is equal to secret, returning a Feedback of True (indicating the game
has been won by the CodeBreaker) and a Feedback full of Red Hint pegs.
Else, getFeedback calls getRedHints, getWhiteHints, joinHints, and sortHints to form
Feedback, returning the value of False along with it.

Code Snippet:
def get_feedback(guess: Guess, secret: Secret) -> tuple[bool, Feedback]:

 if guess == secret:

 return [True, tuple([Hint.Red] * 4)]

 else:

 red : list = get_red_hints(guess, secret)

 white : list = get_white_hints(guess, secret, red)

 feedback : list[Hint] = join_hints(red, white)

 final_feedback : Feedback = sort_hints(feedback)

 return [False, final_feedback]

getRedHints
Explanation:
This function goes through the Guess and SecretCode to check which Code pegs of a certain index
are matched; these are returned to be True to indicate they must be in the Feedback as Red Hint
pegs.
It uses list comprehension to build the returned list, consisting of tuples.
Each tuple contains a boolean value indicating if a Red Hint peg has been assigned, along with the
current Code peg for that index.
Code Snippet:
def get_red_hints(guess: Guess, secret: Secret) -> list:

 return [(True, guess[i]) if guess[i] == secret[i] else (False, guess[i]) for i in

range(len(guess))]

getWhiteHints
Explanation:
This function recursively checks through the CodeBreaker’s Guess, returning the guessLeft to
check and the runningFeedback every time until there are no more elements in the guessLeft
tuple to check.

If the currentPeg is a duplicate Code peg within the Secret code, occursTwice is the function
called.
Else, if the currentPeg is a singular Code peg within the Secret code, occursOnce is the function
called.
In the case the base case is reached, this function returns the feedback list of tuples containing a
boolean and Code peg value. This will later be known as the list whitePegs.

Code Snippet:
def get_white_hints(guess_left: tuple, running_feedback : list, secret: Secret,

red_pegs: list) -> list:

 if not guess_left:

 return running_feedback

 current_peg : Code = guess_left[0]

 if current_peg in secret:

 match check_if_dupe(current_peg, secret):

 case True:

 new_hint : tuple[bool, Code] = occurs_twice(current_peg, red_pegs,

running_feedback)

 case False:

 new_hint : tuple[bool, Code] = occurs_once(current_peg, red_pegs,

running_feedback)

 else:

 new_hint : tuple[bool, Code] = (False, current_peg)

 return get_white_hints(guess_left[1:], running_feedback + [new_hint], secret,

red_pegs)

joinHints
Explanation:
This function joins the Red Hint pegs list with the White Hint pegs list.
This function uses a mapping function, using lambda to iterate through both lists of Hint pegs.
If in redPegs the current index’s first value within the tuple is True, a Red Hint peg is assigned to
this index of the list to be returned.
Else, if in whitePegs the current index’s first value within the tuple is True, a White Hint peg is
assigned to this index of the list to be returned.
Else, an Empty Hint peg is assigned to this index of the list to be returned.

Code Snippet:
def join_hints(red_pegs : list, white_pegs : list) -> list[Hint]:

 return list(map(lambda i: Hint.Red if red_pegs[i][0] else Hint.White if

white_pegs[i][0] else Hint.Empty, range(4)))

sortHints
Explanation:
This function sorts the Hints for Feedback to ensure they are ordered from Red Hints to White
Hints to Empty Hints, just as Feedback would be given in an actual game.

The function creates a dictionary called feedbackOrder, storing the ideal order of Hint pegs in
Feedback.
It then uses the built-in sorted function to sort the list feedback using feedbackOrder as a key.
This is then turned into a tuple and returned as Feedback.

Code Snippet:
def sort_hints(feedback: list[Hint]) -> Feedback:

 feedback_order = {Hint.Red: 0, Hint.White: 1, Hint.Empty: 2}

 return tuple(sorted(feedback, key=lambda x: feedback_order[x]))

checkIfDupe
Explanation:
This pure function was made to check whether the current Code peg being checked is duplicated
within the SecretCode. This would indicate that the SecretCode is a hard SecretCode and that
there is a single pair of the same Code pegs within the SecretCode.
This function also helps determine which function out of occursOnce and occursTwice will be
called in checkThroughGuess.
It returns a boolean value regarding whether it is a duplicate Code peg in the Secret code or not.

Code Snippet:
def check_if_dupe(peg : Code, secret : Secret) -> bool:

 return secret.count(peg) == 2

checkGuessedCorrectly
Explanation:
This function was created to check whether the Code peg being checked for White Hint peg
assignment has already been assigned a Red Hint peg or not.

It uses the built in count function to count how many times the specified tuple appears in the list
redPegs and returns this integer.
Code Snippet:
def check_guessed_correctly(peg : Code, red_pegs : list) -> int:

 return red_pegs.count((True, peg))

checkAlmostGuessed
Explanation:
This function was created to check whether the Code peg being checked for White Hint peg
assignment has already been assigned a White Hint peg or not.

It uses the built in count function to count how many times the specified tuple appears in the list
runningFeedback and returns this integer.

Code Snippet:
def check_almost_guessed(peg : Code, running_feedback : list) -> int:

 return running_feedback.count((True, peg))

occursOnce

Explanation:
This function checks whether the Code peg given meets the criteria to be assigned a White Hint peg
or not, when it occurs only once in the SecretCode.

It returns the Boolean value regarding whether a Red or White Hint peg has already been assigned
to the current Code peg.
If none have been assigned, return True, else, return False, along with the current Code peg.

Code Snippet:
def occurs_once(peg : Code, red_pegs : list, running_feedback : list) -> tuple[bool,

Code]:

 return [(check_guessed_correctly(peg, red_pegs) == 0 and check_almost_guessed(peg,

running_feedback) == 0), peg]

occursTwice
Explanation:
This function checks whether the Code peg given meets the criteria to be assigned a White Hint peg
or not, when it occurs twice in the SecretCode.

It returns the Boolean value regarding whether a two Hint pegs have already been assigned to the
current Code peg.
If less than two have been assigned, return True, else, return False, along with the current Code
peg.

Code Snippet:
def occurs_twice(peg : Code, red_pegs : list, running_feedback : list) -> tuple[bool,

Code]:

 return [((check_guessed_correctly(peg, red_pegs) + check_almost_guessed(peg,

running_feedback)) < 2), peg]

displayBoard

Explanation:
As a whole, displayBoard takes in a Board, and prints out the header for the section, as well as the
actual board, Row by Row.

The join method is used to join the lists of string (header and board) together, separating each
element in the new joint list with “\n”.

The two new functions, formatRow and formatPeg were made to ensure a declarative and
functional programming style, instead of using a for loop for the entire function.
Code Snippet:
def display_board(game_board: Board) -> None:

 header : list[str] = [

 "DISPLAYING BOARD ---------------------------",

 "",

 " GUESS FEEDBACK",

 " -------- -------- -------- -------- -------- -------- -------- -------- "

]

 board : list[str] = [format_row(row) for row in game_board]

 print("\n".join(header + board))

formatRow
Explanation:
This was created to format each Row of the board variable into a string that can be displayed.

It takes in the Row to be formatted, and returns a list of strings containing the board cell formats,
and the Code and Hint pegs in a string format.
The join built-in function was used to join the header, rowPegs, and footer lists together,
separating each element in the new joint list with “\n”.

Code Snippet:
def format_row(row: Row) -> list[str]:

 header : list[str] = ["| | | | |

| | | | |"]

 guess: Guess = row[0]

 feedback: Feedback = row[1]

 row_pegs: list[str] = [format_peg(peg) for peg in guess] + ["| "] +

[format_peg(peg) for peg in feedback] + ["|"]

 footer : list[str] = ["| | | | |

| | | | |",

 " -------- -------- -------- -------- -------- -------- --------

-------- "]

 return "\n".join(header) + "\n" + "".join(row_pegs) + "\n" + "\n".join(footer)

formatPeg
Explanation:
This was created to format each Code or Hint peg, and to add padding to allow for a consistent size
of Board slots.
If the string of a peg is less than 6 characters in length (the maximum length of a peg’s string),
padding is added and the size of padding depends on how many more characters are needed to
make the string of the peg’s length 6.

Code Snippet:
def format_peg(peg: Union[Code, Hint]) -> str:

 match len(str(peg)):

 case 6:

 return f"| {print_in_colour(peg)} "

 case _:

 padding: str = " " * (6-len(str(peg)))

 return f"| {print_in_colour(peg)}{padding} "

printInColour
Explanation:
This function allows the printing of the Code and Hint pegs in their respective colours. This is done
by using ANSI escape codes.

The function uses match cases to match the return string to its corresponding Code or Hint peg.

Code Snippet:
def print_in_colour(peg: Union[Code, Hint]) -> str:

 match peg:

 case Code_Peg_Option.Orange:

 return "\033[38;5;208morange\033[0m"

 case Code_Peg_Option.Green:

 return "\033[38;5;82mgreen\033[0m"

 case Code_Peg_Option.Blue:

 return "\033[38;5;12mblue\033[0m"

 case Code_Peg_Option.Yellow:

 return "\033[38;5;184myellow\033[0m"

 case Code_Peg_Option.Purple:

 return "\033[38;5;134mpurple\033[0m"

 case Code_Peg_Option.Brown:

 return "\033[38;5;94mbrown\033[0m"

 case Code_Peg_Option.Empty:

 return " "

 case Hint_Peg.White:

 return "\033[38;5;15mwhite\033[0m"

 case Hint_Peg.Red:

 return "\033[38;5;124mred\033[0m"

 case Hint_Peg.Empty:

 return " "

updateBoard
Explanation:
This function starts with creating a new Row containing new_guess and new_feedback.
Applying len() to game_board, if the len() is 6, using the turn_count as the index to which the
new_row is to updated into, the function will return the new_row joined alongside the game_board
in index sliced form to ultimately return a Board including the new_row.

The same process applies to if the len() of game_board is 4, however, match cases are limited to
only four cases assuming that the game_board passed in as the parameter contains four Rows.

Code Snippet:
def update_board(game_board: Board, new_guess: Guess, new_feedback: Feedback,

turn_count: int) -> Board:

 new_row: Row = (new_guess, new_feedback)

 match len(game_board):

 case 6:

 match turn_count:

 case 1:

 return (new_row,) + game_board[:-1]

 case 2:

 return game_board[:-5] + (new_row,) + game_board[2:]

 case 3:

 return game_board[:-4] + (new_row,) + game_board[3:]

 case 4:

 return game_board[:-3] + (new_row,) + game_board[4:]

 case 5:

 return game_board[:-2] + (new_row,) + game_board[5:]

 case 6:

 return game_board[0:5] + (new_row,)

 case 4:

 match turn_count:

 case 1:

 return (new_row,) + game_board[:-1]

 case 2:

 return game_board[:-3] + (new_row,) + game_board[2:]

 case 3:

 return game_board[:-2] + (new_row,) + game_board[3:]

 case 4:

 return game_board[0:3] + (new_row,)

T3 – Testing and Verification
Manual Testing
These tests are based off of our Gherkin specifications.

ID Feature Steps Expected Actual Result
1.1 Select

SinglePlayer
mode

1. Load
program
2. Enter 1
3. Press
Enter

1. Main menu
displayed
2. Output of
“SINGLE_PLAYER
GAME MODE.”
displayed
3. Game board
displayed
4. Prompted for
guess

1.2 Select
Multiplayer
mode

1. Load
program
2. Enter 2
3. Press
Enter

1. Main menu
displayed
2. Prompted for
secret code

1.3 Select
Campaign
mode

1. Load
program
2. Enter 3
3. Press
Enter

1. Main menu
displayed
2. Output of
“CAMPAIGN
GAME MODE
STAGE 1.”
displayed
3. Game board
displayed
4. Prompted for
guess

1.4 Select Exit 1. Load
program
2. Enter 3
3. Press
Enter

1. Main menu
displayed
2. Output of “Exiting
Mastermind…”
displayed
3. Program is exited

1.5 Select
invalid game
mode

1. Load
program
2. Enter
any input
that is not
1, 2, 3, or 4
(e.g. i don’t
know)
3. Press
Enter

1. Main menu
displayed
2. Output of ‘That
is an invalid main
menu choice.’
3. Prompted for
game mode
option again

2.1 Select a

code peg
1. Load
program
2. Enter 1
3. Enter 1

1. Main menu
displayed
2. Output of
“SINGLE_PLAYER
GAME MODE.”
displayed
3. Game board
displayed
4. Prompted for
guess

5. Output of “You
have chosen an
orange peg.”
displayed in
colour
6. Prompted for
the next peg
choice

2.2 Select an
invalid code
peg

1. Load
program
2. Enter 1
3. Enter
any input
that isn’t 1,
2, 3, 4, 5,
or 6 (e.g.
White)

1. Main menu
displayed
2. Output of
“SINGLE_PLAYER
GAME MODE.”
displayed
3. Game board
displayed
4. Prompted for
guess
5. Output of
“That is an
invalid code peg
choice.”
6. Prompted for
guess again

3.1 Select a

confirmation
option after
setting the
secret code:
Yes

1. Load
program
2. Enter 2
3. Enter 1,
2, 2, 3
4. Enter y

1. Main menu
displayed
2. Prompted for
secret code
3. Prompted for
confirmation
option
4. Output of
‘Choice

Confirmed.’ Is
output

3.2 Select a
confirmation
option after
setting the
secret code:
No

1. Load
program
2. Enter 2
3. Enter 1,
2, 2, 3
4. Enter n

1. Main menu
displayed
2. Prompted for
secret code
3. Prompted for
confirmation
option
4. Output of
‘Choice
Cancelled.’ Is
displayed
5. Prompted for
secret code
again

3.3 Select a
confirmation
option after
setting the
secret code:
invalid input

1. Load
program
2. Enter 2
3. Enter 1,
2, 2, 3
4. Enter no

1. Main menu
displayed
2. Prompted for
secret code
3. Prompted for
confirmation
option
4. Output of ‘That
is an invalid
confirmation
choice.’ ss
displayed
5. Prompted for
confirmation
choice again

4.1 Select a
confirmation
option after
making a
guess: Yes

1. Load
program
2. Enter 1
3. Enter 1,
2, 3, 4
4. Enter y

1. Main menu
displayed
2. Output of
“SINGLE_PLAYER
GAME MODE.”
displayed
3. Game board
displayed
4. Prompted for
guess
5. Prompted for
confirmation
option
6. Output of
‘Choice
Confirmed.’ is
displayed
7. The updated
board should be
displayed

4.2 Select a
confirmation
option after
making a
guess: No

1. Load
program
2. Enter 1
3. Enter 1,
2, 3, 4
4. Enter n

1. Main menu
displayed
2. Output of
“SINGLE_PLAYER
GAME MODE.”
displayed
3. Game board
displayed
4. Prompted for
guess
5. Prompted for
confirmation
option
6. Output
‘Choice
Cancelled.’
should be
displayed

4.3 Select a
confirmation
option after
making a
guess:
invalid input

1. Load
program
2. Enter 1
3. Enter 1,
2, 3, 4
4. Enter
YES

1. Main menu
displayed
2. Output of
“SINGLE_PLAYER
GAME MODE.”
displayed
3. Game board
displayed
4. Prompted for
guess
5. Prompted for
confirmation
option
6. Output ‘That is
an invalid
confirmation
choice.’ should
be displayed
7. Prompted for a
confirmation
choice again

Automated Testing

Pytest

Imports Used

import pytest

from main import *

parseMainMenuOption
These tests were made to ensure that the Menu type parser function was working. If this were not to work, we
would not be able to start a game of Mastermind.

def test_parse_main_menu_option():

 assert Main_Menu_Option.parse_main_menu_option("1") ==

Main_Menu_Option.Single_Player

 assert Main_Menu_Option.parse_main_menu_option("2") == Main_Menu_Option.Multiplayer

 assert Main_Menu_Option.parse_main_menu_option("3") == Main_Menu_Option.Campaign

 assert Main_Menu_Option.parse_main_menu_option("4") == Main_Menu_Option.Exit

 assert Main_Menu_Option.parse_main_menu_option("") is None

 assert Main_Menu_Option.parse_main_menu_option("single player") is None

parseConfirmationOption
These tests were made to ensure that the Confirm type parser function was working. If this were not to work, we
would not be able to confirm a Guess or Secret code made.

def test_parse_confirmation_option():

 assert Confirmation_Option.parse_confirmation_option("Y") == Confirmation_Option.Yes

 assert Confirmation_Option.parse_confirmation_option("y ") ==

Confirmation_Option.Yes

 assert Confirmation_Option.parse_confirmation_option("YeS") is None

 assert Confirmation_Option.parse_confirmation_option(" N") ==

Confirmation_Option.No

 assert Confirmation_Option.parse_confirmation_option("n") == Confirmation_Option.No

 assert Confirmation_Option.parse_confirmation_option("no") is None

 assert Confirmation_Option.parse_confirmation_option("hell naur") is None

 assert Confirmation_Option.parse_confirmation_option("") is None

parseCodePegOption
These tests were made to check that for every possible kind of Player input for a chosen peg, the parser method
would return the correct output.

def test_parse_code_peg_option():

 assert Code_Peg_Option.parse_code_peg_option("0") is None

 assert Code_Peg_Option.parse_code_peg_option("1") == Code_Peg_Option.Orange

 assert Code_Peg_Option.parse_code_peg_option("2") == Code_Peg_Option.Green

 assert Code_Peg_Option.parse_code_peg_option("3") == Code_Peg_Option.Blue

 assert Code_Peg_Option.parse_code_peg_option("4") == Code_Peg_Option.Yellow

 assert Code_Peg_Option.parse_code_peg_option("5") == Code_Peg_Option.Purple

 assert Code_Peg_Option.parse_code_peg_option("6") == Code_Peg_Option.Brown

 assert Code_Peg_Option.parse_code_peg_option("Orange") is None

 assert Code_Peg_Option.parse_code_peg_option("") is None

str(codePegOption)
These tests were made to check whether the string methods of each coloured Code peg output the correct
string.

def test_code_peg_option_str():

 assert str(Code_Peg_Option.Empty) == "empty"

 assert str(Code_Peg_Option.Orange) == "orange"

 assert str(Code_Peg_Option.Green) == "green"

 assert str(Code_Peg_Option.Blue) == "blue"

 assert str(Code_Peg_Option.Yellow) == "yellow"

 assert str(Code_Peg_Option.Purple) == "purple"

 assert str(Code_Peg_Option.Brown) == "brown"

str(hintPeg)
These tests were made to check whether the string methods of each coloured Hint peg output the correct
string.

def test_hint_peg_str():

 assert str(Hint_Peg.Empty) == "empty"

 assert str(Hint_Peg.White) == "white"

 assert str(Hint_Peg.Red) == "red"

getFeedback
This function is a crucial aspect to our program. However, in the 3rd test, it failed, indicating something was
wrong with the Feedback generated – after inspecting the code, we assume it has something to do with the
getWhiteHints function’s logic.

def test_get_feedback():

 guess = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 secret = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 assert get_feedback(guess, secret) == [True, (Hint_Peg.Red, Hint_Peg.Red,

Hint_Peg.Red, Hint_Peg.Red)]

 guess = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 secret = (Code_Peg_Option.Orange, Code_Peg_Option.Orange, Code_Peg_Option.Green,

Code_Peg_Option.Brown)

 assert get_feedback(guess, secret) == [False, (Hint_Peg.White, Hint_Peg.White,

Hint_Peg.White, Hint_Peg.White)]

 guess = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 secret = (Code_Peg_Option.Green, Code_Peg_Option.Orange, Code_Peg_Option.Green,

Code_Peg_Option.Brown)

 assert get_feedback(guess, secret) == [False, (Hint_Peg.Red, Hint_Peg.White,

Hint_Peg.White, Hint_Peg.Empty)] # logic is working incorrectly

joinHints

def test_join_hints():

 red_pegs = [(False, Code_Peg_Option.Green), (True, Code_Peg_Option.Brown), (False,

Code_Peg_Option.Orange), (False, Code_Peg_Option.Orange)]

 white_pegs = [(True, Code_Peg_Option.Green), (False, Code_Peg_Option.Brown), (True,

Code_Peg_Option.Orange), (False, Code_Peg_Option.Orange)]

 assert join_hints(red_pegs, white_pegs) == [Hint_Peg.White, Hint_Peg.Red,

Hint_Peg.White, Hint_Peg.Empty]

sortHints

def test_sort_hints():

 hints = [Hint_Peg.Empty, Hint_Peg.White, Hint_Peg.Red, Hint_Peg.Red]

 assert sort_hints(hints) == (Hint_Peg.Red, Hint_Peg.Red, Hint_Peg.White,

Hint_Peg.Empty)

getRedHints
These tests were made to ensure that the correct list of Red Hint peg indicators was output by the getRedHints
function depending on the Player’s Guess and the Secret code.

def test_get_red_hints():

 guess = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 secret = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 assert get_red_hints(guess, secret) == [(True, Code_Peg_Option.Green), (True,

Code_Peg_Option.Brown), (True, Code_Peg_Option.Orange), (True, Code_Peg_Option.Orange)]

 guess = (Code_Peg_Option.Purple, Code_Peg_Option.Yellow, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 assert get_red_hints(guess, secret) == [(False, Code_Peg_Option.Purple), (False,

Code_Peg_Option.Yellow), (True, Code_Peg_Option.Orange), (True, Code_Peg_Option.Orange)]

checkIfDupe
This test checks for both outputs of Boolean values from checkIfDupe. It ensures that if a Code peg is in the
Secret code, True will be output, and if not. False will be output.

def test_check_if_dupe():

 secret = (Code_Peg_Option.Green, Code_Peg_Option.Brown, Code_Peg_Option.Orange,

Code_Peg_Option.Orange)

 assert check_if_dupe(Code_Peg_Option.Orange, secret) == True

 assert check_if_dupe(Code_Peg_Option.Green, secret) == False

checkGuessedCorrectly
These tests were made to ensure checkGuessedCorrectly correctly counts the number of times a tuple
appears in the list of Red Hint peg indicators.

def test_check_almost_guessed_0():

 red_pegs = [(True, Code_Peg_Option.Orange)]

 assert check_almost_guessed(Code_Peg_Option.Green, red_pegs) == 0

def test_check_almost_guessed_1():

 red_pegs = [(True, Code_Peg_Option.Green), (True, Code_Peg_Option.Orange)]

 assert check_almost_guessed(Code_Peg_Option.Orange, red_pegs) == 1

def test_check_almost_guessed_2():

 red_pegs = [(True, Code_Peg_Option.Green), (True, Code_Peg_Option.Orange), (True,

Code_Peg_Option.Blue), (True, Code_Peg_Option.Orange)]

 assert check_almost_guessed(Code_Peg_Option.Orange, red_pegs) == 2

checkAlmostGuessed
These tests were made to ensure checkAlmostGuessed correctly counts the number of times a tuple appears
in the list of White Hint peg indicators.

def test_check_almost_guessed_0():

 running_feedback = [(True, Code_Peg_Option.Orange)]

 assert check_almost_guessed(Code_Peg_Option.Green, running_feedback) == 0

def test_check_almost_guessed_1():

 running_feedback = [(True, Code_Peg_Option.Green), (True, Code_Peg_Option.Orange)]

 assert check_almost_guessed(Code_Peg_Option.Orange, running_feedback) == 1

def test_check_almost_guessed_2():

 running_feedback = [(True, Code_Peg_Option.Green), (True, Code_Peg_Option.Orange),

(True, Code_Peg_Option.Blue), (True, Code_Peg_Option.Orange)]

 assert check_almost_guessed(Code_Peg_Option.Orange, running_feedback) == 2

str(Player)
These tests were made to check whether the string methods of each Player output the correct string.

def test_code_maker_str():

 assert str(CodeMaker()) == "Code Maker"

def test_code_breaker_str():

 assert str(CodeBreaker()) == "Code Breaker"

def test_cpu_str():

 assert str(CPU()) == "CPU"

normalSecretCode
This test was made to ensure that a random Secret code generated by normalSecretCode had 4 different Code
peg colours. Asserting using the code converted into a set ensured no duplicate elements were counted.

def test_normal_secret_code():

 code = normal_secret_code()

 assert len(code) == len(set(code))

hardSecretCode
This test was made to ensure that a random Secret code generated by hardSecretCode had 3 different Code
peg colours, with one duplicate. The assertion converts the tuple into a set to check that the number of unique
elements was equal to 3.

def test_hard_secret_code():

 code = hard_secret_code()

 assert len(set(code)) == 3

formatPeg
These tests were made to ensure that the formatPeg function returned the correct string. If this were to be
incorrect, the Board displayed in displayBoard would be deformed.

def test_format_peg():

 assert format_peg(Code_Peg_Option.Empty) == "| "

 assert format_peg(Code_Peg_Option.Orange) == "| \x1b[38;5;208morange\x1b[0m "

 assert format_peg(Code_Peg_Option.Green) == "| \033[38;5;82mgreen\033[0m "

 assert format_peg(Code_Peg_Option.Blue) == "| \033[38;5;12mblue\033[0m "

 assert format_peg(Code_Peg_Option.Yellow) == "| \033[38;5;184myellow\033[0m "

 assert format_peg(Code_Peg_Option.Purple) == "| \033[38;5;134mpurple\033[0m "

 assert format_peg(Code_Peg_Option.Brown) == "| \033[38;5;94mbrown\033[0m "

 assert format_peg(Hint_Peg.Empty) == "| "

 assert format_peg(Hint_Peg.White) == "| \033[38;5;15mwhite\033[0m "

 assert format_peg(Hint_Peg.Red) == "| \033[38;5;124mred\033[0m "

endgame
These tests were made to ensure that the endGame function output the correct messages depending on the
game mode, the stage of the Campaign game mode, how the game ended, the game’s Players, and the Secret
code.

The parameter capsys was used to capture and check what the function had output when called within the test
functions (Kutaj, 2023).

def test_end_single_player_game(capsys):

 end_game(Main_Menu_Option.Single_Player, None, False, (CodeBreaker(), CPU()),

(Code_Peg_Option.Orange, Code_Peg_Option.Green, Code_Peg_Option.Blue,

Code_Peg_Option.Purple))

 capture = capsys.readouterr()

 assert "\x1b[38;5;208morange\x1b[0m \x1b[38;5;82mgreen\x1b[0m

\x1b[38;5;12mblue\x1b[0m \x1b[38;5;134mpurple\x1b[0m\n" in capture.out

 assert "\nCPU has won the game!" in capture.out

def test_end_multiplayer_game(capsys):

 end_game(Main_Menu_Option.Multiplayer, None, False, (CodeBreaker(), CodeMaker()),

(Code_Peg_Option.Orange, Code_Peg_Option.Green, Code_Peg_Option.Blue,

Code_Peg_Option.Purple))

 capture = capsys.readouterr()

 assert "\x1b[38;5;208morange\x1b[0m \x1b[38;5;82mgreen\x1b[0m

\x1b[38;5;12mblue\x1b[0m \x1b[38;5;134mpurple\x1b[0m\n" in capture.out

 assert "\nCode Maker has won the game!" in capture.out

for campaign message 1

def test_end_campaign_game(capsys):

 end_game(Main_Menu_Option.Campaign, 1, True, (CodeBreaker(), CPU()),

(Code_Peg_Option.Orange, Code_Peg_Option.Green, Code_Peg_Option.Blue,

Code_Peg_Option.Purple))

 capture = capsys.readouterr()

 assert "\x1b[38;5;208morange\x1b[0m \x1b[38;5;82mgreen\x1b[0m

\x1b[38;5;12mblue\x1b[0m \x1b[38;5;134mpurple\x1b[0m\n" in capture.out

 assert "\nCode Breaker has won the game!" in capture.out

 assert "\nYou have successfully completed your Campaign game!" in capture.out

for campaign message 2

def test_end_campaign_game(capsys):

 end_game(Main_Menu_Option.Campaign, 2, True, (CodeBreaker(), CPU()),

(Code_Peg_Option.Orange, Code_Peg_Option.Green, Code_Peg_Option.Blue,

Code_Peg_Option.Purple))

 capture = capsys.readouterr()

 assert "\x1b[38;5;208morange\x1b[0m \x1b[38;5;82mgreen\x1b[0m

\x1b[38;5;12mblue\x1b[0m \x1b[38;5;134mpurple\x1b[0m\n" in capture.out

 assert "\nCode Breaker has won the game!" in capture.out

 assert "\nWell done! You have advanced to the next stage in your Campaign game!" in

capture.out

for campaign message 3

def test_end_campaign_game(capsys):

 end_game(Main_Menu_Option.Campaign, 1, False, (CodeBreaker(), CPU()),

(Code_Peg_Option.Orange, Code_Peg_Option.Green, Code_Peg_Option.Blue,

Code_Peg_Option.Purple))

 capture = capsys.readouterr()

 assert "\x1b[38;5;208morange\x1b[0m \x1b[38;5;82mgreen\x1b[0m

\x1b[38;5;12mblue\x1b[0m \x1b[38;5;134mpurple\x1b[0m\n" in capture.out

 assert "\nCPU has won the game!" in capture.out

 assert "\nYou have failed your Campaign game!" in capture.out

Figure 9 Everything but the 3rd getFeedback test is working correctly.

T4 – Understanding and Exploring Team-Based
Software Development

OpenRA
OpenRA is an “Open Source real-time strategy game engine for early Westwood games such as Command &
Conquer: Red Alert written in C# using SDL and OpenGL.” (OpenRA, 2025).

As a game engine, it is a software framework equipped with tools that allow users to develop video games or
digital twins for visualisation (Ltd, n.d.). A game engine may include a 2D or 3D graphics rendering engine,
physics and collision engines, audio engines, artificial intelligence, animation engines, and more
(www.perforce.com, n.d.). Specifically, OpenRA is a game engine that aids users to build 2D and 2.5D real-time
strategy games (www.openra.net, n.d.).

The product’s target users would be those interested in playing, “rebuilding” and “reimagining” classic 2D and
3D RTS games. With support to integrated online multiplayer, those who enjoy playing games with others online
would be attracted to OpenRA.

Documentation for Project Contributors
Documentation for programming projects is a way of providing a basis on describing the nature, how it works,
and how to appropriately use it.

Code understandability and maintainability are improved to develop a better notion of how certain parts of the
code should be treated as you consider the inputs, outputs and overall purpose. Addiitionally, it helps to
generate insights and develop new practices in teams in order to stay consistent within the development
workspace (8 Important Points, 2023).

Referring to OpenRA’s GitHub repository, it conveniently provides links to areas in relation to FAQs, their Wiki,
and guides for their Contribution, Mapping and Modding to help build that basis understanding to how the
project as a whole should be treated before contributing.

Figure Relevant Links to certain Documentation

Figure Documentation Links for Contribution, Mapping and Modding

Version Control
Version control systems are tools that allow users to track and manage changes to a project’s file system over
time (Soumya, 2019). This is especially helpful for team projects, allowing team members to work on different
parts of the project simultaneously without overwriting one another’s changes and providing a clear commit
history, resulting in increase of efficiency, reduction of errors, and a more organised workflow.

In the table below, the main Git commands for version control are covered.

Git Command What does this command do?
Clone Creates a copy of an already existing repository.
Commit Saves the state of a project at time of commit to help keep track of changes.
Pull Fetches changes from a remote repository and merges it with the local repository.
Push Updates a remote repository with changes from the local repository.
Merge Combines the changes from two branches into one.
Branch Creates a new branch that one can work on individually, without interfering with the

main project.
Pull request A request to merge changes from one branch into another.

Version Control vs. Cloud-based Storage Systems
Version Control Systems are software tools that assist the process of software developing teams managing the
changes being made to their program code to enhance the workload efficiency. (Atlassian, n.d.).

Cloud-Based Storage Systems are data deposit models with the purpose of storing digital documents, photos,
videos and many different types of media within offsite cloud-based servers to be accessed whenever
(Chiradeep BasuMallick, 2025). Cloud-Based Storage System do not keep track of any changes compared to
VCS as they’re solely providing storage and access services.

OpenRA’s and Our Commit History
The first major commit of program code was made on June 19, 2007 by a user called chrisf involves several
folders with the majority containing C# files added into the repository, which potentially involve setting up the
initial framework of the similar Westwood games (OpenRA, 2025).

Commit 52a6057 “Fix defense spelling” at
https://github.com/OpenRA/OpenRA/commit/52a605787b9ea95ec1513f7a17290ed5ada5bb3a .

Committed on October 17, 2024, which involved replacing every instance of “defence” and “defences” being
replaced with American English spelling of “defense” and “defenses”.

This is similarly related to the logical error of displaying the game mode header of a specific game mode as a
typo when initiated from Main Menu state. The commit was committed directly into the “bleed” branch.

OpenRA’s Issue Tracker
The issue selected is #2021 “Hard to read some colors” at https://github.com/OpenRA/OpenRA/issues/2021.

Figure 10 Screenshot of the issue being discussed.

It is a closed issue that was made by the user kyrreso on April 18, 2012, talking about how certain text colours
were impossible to read on their background colours. It is an issue related to user experience and user
interface design.

https://github.com/OpenRA/OpenRA/commit/52a605787b9ea95ec1513f7a17290ed5ada5bb3a
https://github.com/OpenRA/OpenRA/issues/2021

This is related to one of the issues we had when choosing the colours for the printInColour function during
implementation.

OpenRA’s Pull Request Tracker
The pull request selected is #21817 “Implement sonic blast rendering effect.” at
https://github.com/OpenRA/OpenRA/pull/21817/files.

Figure 11 Screenshot of the pull request being discussed.

This pull request was made by the user pchote and within their pull request, changes to three C# code files,
one shading file, and two configuration files were made to implement the sonic blast rendering effect.

Pair Project Development Reflection
After trying to implement the first stage of our plans and designs, we received verbal feedback from a Tutor,
which led to us to re-iterating and starting a second stage of planning and designing that adopts declarative and
functional programming rather than imperative programming.

Implementation workload handling was influenced by task interest, with one developing recursive functions for
game play, and another developing smaller functions to be called in game play. Types and user input functions
were devised together before starting the rest of the program to ensure that the base functions worked
perfectly.

https://github.com/OpenRA/OpenRA/pull/21817/files

During implementation, we were constantly testing our own functions, and for this document, it was the same
process.

The Use of Version Control in Pair Project Development Reflection
Git was utilised for version control involving pull, push and commits being made. However, it would have been
even better if we used pull requests to propose amendments, issues to track problems over on the spot
messaging, and using branches to work on the code individually.

In future team-based projects, we will do our best to utilise these features of Git version control and ensure that
any commit messages, issues or pull requests stated are explained in detail to avoid potential prolonging errors
being produced when conducting tests.

References

ONS (2024). Milestones: journeying through modern life - Office for National Statistics. [online]

www.ons.gov.uk. Available at:

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articl

es/milestonesjourneyingthroughmodernlife/2024-04-08.

Wikipedia. (2020). Mastermind (board game). [online] Available at:

https://en.wikipedia.org/wiki/Mastermind_(board_game).

Kutaj, P. (2023). How to Test Printed Output in Python with Pytest and its Capsys Fixture . [online] Medium.

Available at: https://pavolkutaj.medium.com/how-to-test-printed-output-in-python-with-pytest-and-its-

capsys-fixture-161010cfc5ad.

OpenRA (2025). GitHub - OpenRA/OpenRA: Open Source real-time strategy game engine for early Westwood

games such as Command & Conquer: Red Alert written in C# using SDL and OpenGL. Runs on Windows, Linux,

*BSD and Mac OS X. [online] GitHub. Available at: https://github.com/OpenRA/OpenRA.

Ltd, A. (n.d.). What is a Gaming Engine? [online] Arm | The Architecture for the Digital World. Available at:

https://www.arm.com/glossary/gaming-engines.

 www.perforce.com. (n.d.). Complete Game Engine Overview | Perforce. [online] Available at:

https://www.perforce.com/resources/vcs/game-engine-overview.

 www.openra.net. (n.d.). About | OpenRA. [online] Available at: https://www.openra.net/about/.

 8 Important Points (2023) The importance of documentation in programming, Medium. Available at:

https://genuineproductdigital.medium.com/the-importance-of-documentation-in-programming-30c286f86

(Accessed: 23 May 2025).

Soumya (2019). Version Control Systems. [online] GeeksforGeeks. Available at:

https://www.geeksforgeeks.org/version-control-systems/.

OpenRA (2025). openra first commit! · OpenRA/OpenRA@b59ba43. [online] GitHub. Available at:

https://github.com/OpenRA/OpenRA/commit/b59ba43934a3a6837410db51cf60157cf854e52d [Accessed 23

May 2025].

Atlassian (n.d.) What is version control: Atlassian Git Tutorial, Atlassian. Available at:

https://www.atlassian.com/git/tutorials/what-is-version-control (Accessed: 23 May 2025).

Chiradeep BasuMallick (2025) What is cloud storage? definition, types, benefits, and best practices -

spiceworks, Spiceworks Inc. Available at: https://www.spiceworks.com/tech/cloud/articles/what-is-cloud-

storage/ (Accessed: 23 May 2025).

